

Praise for Argo CD: Up and Running

This book from two leading Argo experts is clear and to

the point. You’ll be up to speed quickly and well on your

way to being an advanced Argo practitioner.

—Michael Crenshaw, staff SWE and lead Argo
CD maintainer, Intuit

If you want a guide that masterfully demystifies the Argo

CD and GitOps world, look no further. Whether you’re

just beginning or fine-tuning a production setup, the

authors distill years of practical experience condensed

into this book that will serve as a trusted reference long

after the first read.

—Lipi Deepaakshi Patnaik, senior software
developer, Zeta Suite

I wish I had this book when I first started learning Argo

CD—it would have made implementation so much easier.

—Werner Dijkerman, Kubernetes and DevOps
engineer, Awesome Cloud

Andrew and Christian discuss several applicable

examples in-depth at an enjoyable reading pace—a

practical reference!

—Nadir Doctor, architect

This book is a must-read for anyone adopting GitOps with

Kubernetes and Argo CD. It provides the practical

guidance needed to effectively get started with Argo CD

and scale it for use in multi-cluster environments.

—Manuel Dewald, lead software architect at
Codesphere and coauthor of Operating

OpenShift

Working with Andy and Christian, you naturally learn by

osmosis. I’m thrilled they’ve captured their deep

knowledge of real-world GitOps patterns and advanced

Argo CD in this book, allowing anyone to benefit from

their proven experience and be inspired by their passion.

—Natale Vinto, director of developer
advocacy, Red Hat

In my experience, GitOps and Argo CD are widely

deployed but commonly misunderstood. Andrew and

Christian are working hard to change this, covering both

the theory and the execution. This book is my go-to

reference for everything from deploying applications to

operationalizing Argo CD.

—Daniel Bryant, platform engineer and PMM,
Syntasso

The authors have done an outstanding job curating a

thoughtful and thorough journey through Argo CD.

Whether you’re deploying your first application or scaling

GitOps in an enterprise setting, this book equips you with

the tools and mindset you need to succeed. A standout

resource in this ecosystem.

—Samyak Ahuja, software engineer, Uber

Argo CD: Up and Running

A Hands-On Guide to GitOps and
Kubernetes

Andrew Block and Christian

Hernandez

Argo CD: Up and Running

by Andrew Block and Christian Hernandez
Copyright © 2025 Andrew Block and Christian Hernandez.
All rights reserved.
Published by O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472.
O’Reilly books may be purchased for educational, business,
or sales promotional use. Online editions are also available
for most titles (http://oreilly.com). For more information,
contact our corporate/institutional sales department: 800-
998-9938 or corporate@oreilly.com.

Acquisitions Editor: Megan Laddusaw

Development Editor: Jill Leonard

Production Editor: Kristen Brown

Copyeditor: nSight, Inc.

Proofreader: Emily Wydeven

Indexer: Sue Klefstad

Cover Designer: Susan Thompson

Cover Illustrator: Karen Montgomery

Interior Designer: David Futato

Interior Illustrator: Kate Dullea

June 2025: First Edition

http://oreilly.com/

Revision History for the First Edition

2025-06-16: First Release

See http://oreilly.com/catalog/errata.csp?

isbn=9781098142001 for release details.
The O’Reilly logo is a registered trademark of O’Reilly
Media, Inc. Argo CD: Up and Running, the cover image,
and related trade dress are trademarks of O’Reilly Media,
Inc.
The views expressed in this work are those of the authors
and do not represent the publisher’s views. While the
publisher and the authors have used good faith efforts to
ensure that the information and instructions contained in
this work are accurate, the publisher and the authors
disclaim all responsibility for errors or omissions, including
without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information
and instructions contained in this work is at your own risk.
If any code samples or other technology this work contains
or describes is subject to open source licenses or the
intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with
such licenses and/or rights.
This work is part of a collaboration between O’Reilly and
Akuity. See our statement of editorial independence.
978-1-098-14200-1
[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098142001
https://oreil.ly/editorial-independence

Preface

Cloud native technologies, regardless of where they reside
(on the public cloud or in a private datacenter) continue to
proliferate. For those running containerized applications,
Kubernetes has become the de facto solution for running
and managing these applications at scale and, as a result,
several different architectural patterns have emerged over
time. GitOps is one such pattern that describes a set of
processes for managing infrastructure and applications
within source code stored within a Git repository. While
GitOps is not exclusive to Kubernetes, it has strong ties to
Kubernetes, as the practices and principles have become
the cornerstone for managing the platform.
While GitOps provides a framework that defines how to
align infrastructure as code (IaC) concepts for managing
resources using content stored within source code
management tools, there is still a need for a tool that can
realize these goals and the declarative nature of the
content. In the world of Kubernetes, Argo CD has become
one of the most popular tools for implementing GitOps
paradigms. Given its broad adoption within the Kubernetes
community for use by both infrastructure and application
teams, having an understanding of how it can be used
effectively is essential.

Who Should Read This Book

This book is primarily written for Kubernetes
administrators and developers who want to utilize GitOps
practices to improve the user experience around cloud

native technologies, along with those looking to
operationalize Argo CD using the full set of features
provided by the tool. However, since many development
teams are also leveraging Argo CD to deploy and manage
their own applications, these teams will also find most of
the content applicable for their use as well. Upon the
completion of this book, you will be better equipped to
implement Argo CD within your organization in a manner
that supports production use.
Whether you just started your Argo CD journey or are a
seasoned power user, we wrote this book to be applicable
for all levels of experience. By including key topics and a
set of relatable examples, this book will become a reference
that you can use from day one and beyond.

Why We Wrote This Book

Argo CD is one of the most popular toolsets in the Cloud
Native Computing Foundation (CNCF) and is quickly
becoming the de facto standard in GitOps implementation.
Even with its popularity, best practices and getting-started
guides are sparse and scattered throughout the ecosystem.
We wrote this book as a central place for those looking into
operationalizing Argo CD without having to scour the
internet for the information. Both of us have spent a large
amount of time in the open source community, as well as
various enterprise organizations, assisting in the
implementation of Argo CD in their own environment.
We’ve collected our shared experiences and seek to be able
to share them broadly so that others, like yourself, can
become successful in your Argo CD journey.

Navigating This Book

The adoption of cloud native concepts is a journey. The
following is a glimpse of what you can expect as you make
your way through this book:

Chapters 1–3 cover everything that you need for
beginning to be productive working with Argo CD,
including the goals the project seeks to achieve, the
installation methods, and common methods for
interacting with the platform.

Chapters 4–5 place an emphasis on one of the most
important topics within Argo CD: Applications. As
the primary vehicle for managing resources in
Kubernetes using GitOps, an in-depth overview of
Applications will be provided, including the tools
that can be used to define Kubernetes manifests, the
content source for these manifests, and how and
when they are applied to Kubernetes clusters.

Chapters 6–9 cover a number of topics that focus on
the management of Argo CD, including
authentication and authorization, cluster
management, multi-tenancy and security.

Chapters 10–11 go beyond the basics, including
advanced Application design and deployment
patterns and extending the base functionality of
Argo CD to take GitOps to new heights.

Chapters 12–13 discuss some of the key areas that
are applicable for using Argo CD within large
organizations, including how both the tool as well as
GitOps in general can be incorporated into
continuous integration/continuous delivery (CI/CD)

workflows, as well as how to operationalize the
platform at scale.

Chapter 14 might appear to be the end of our
journey with Argo CD. However, it is just beginning,
as this concluding chapter provides a number of
resources for how to keep the conversation going
with other members of the Argo CD community, as
well as areas for further exploration.

What This Book Will Not Cover

This book will focus on how to get up and running with
Argo CD in a Kubernetes environment. This book will not
go over how to install Kubernetes nor how to manage the
lifecycle of a Kubernetes cluster. Furthermore, there are
many ways to do the same thing. We will be focusing a lot
on Helm in this book; however, that is not to say that using
other methods aren’t valid. It is impossible to go over every
valid option. There are also many tools/projects that do
similar things. Beyond Argo CD, usage of a particular tool
over another doesn’t mean we are endorsing that tool or
that we would use that particular tool all the time in every
scenario. A lot of the time, we chose the tool for the sake of
brevity. We will try and call out all these exceptions as we
go over them.

Prerequisites

Before getting started, we will go through some of the
prerequisites you might need in order to follow along in
this book. We assume that you have access to an
operational Kubernetes cluster; we will describe how to run
an environment on your local machine using kind.
However, we recommend that you test these out on a test
system (and for that, we recommend kind).

kind

Although the steps outlined in this book should “just work”
with most Kubernetes implementations, the exercises will
make use of kind, a tool for running local Kubernetes

clusters within container “nodes.” You can get started with
kind by visiting https://kind.sigs.k8s.io.
The kind website includes instructions on how to install the
kind binary and any of the other prerequisites. Several
providers are available, which map to popular container
runtimes, including Docker, Podman, or nerdctl
(containerd), which enables its use among a greater set of
end users.

Helm

We use Helm routinely throughout the course of this book,
so it will be necessary to have the Helm binary available in
your $PATH. You can visit Helm for installation guidelines.

Kubernetes Client

Since we will be interacting with Kubernetes clusters, it
will be important to have the kubectl client available. You
can follow the instructions on the official Kubernetes
documentation site.

Argo CD CLI Client

Argo CD comes with the argocd CLI client that interacts
with the Argo CD API server. You can follow the
instructions found on the Argo CD website for installation
of this client.

YAML/JSON Processing

To make things easier, we use a lot of jq and yq to
modify/update JSON/YAML in place. You can find

https://kind.sigs.k8s.io/
https://oreil.ly/Iy8UF
https://oreil.ly/kfRhX
https://oreil.ly/KiJLu

information about these tools by visiting their respective
websites: jq and yq.
If you’re using Linux or a Mac, you might be able to find
these utilities using their respective package manager (for
example; you can run brew install jq on a Mac).

Companion Git Repository

Throughout this book, you will work through a series of
exercises and examples as you expand your knowledge of
Argo CD. These resources are available within a Git
repository.
Since Git is the source code management (SCM) tool for
not only interacting with the companion repository but also
GitOps as a whole as well as Argo CD, it is important that
you also have Git installed locally on your machine.
Information related to Git, including the supported
installation options and platforms can be found on the Git
website.

Conventions Used in This Book

The following typographical conventions are used in this
book:
Italic

Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function

https://oreil.ly/RIguC
https://oreil.ly/huq-E
https://oreil.ly/argoCD_UR_repo
https://git-scm.com/

names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally
by the user.

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is
available for download at https://oreil.ly/argoCD_UR_repo.
If you have a technical question or a problem using the
code examples, please send email to support@oreilly.com.

https://oreil.ly/argoCD_UR_repo
mailto:support@oreilly.com

This book is here to help you get your job done. In general,
if example code is offered with this book, you may use it in
your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a
significant portion of the code. For example, writing a
program that uses several chunks of code from this book
does not require permission. Selling or distributing
examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting
example code does not require permission. Incorporating a
significant amount of example code from this book into
your product’s documentation does require permission.
We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “Argo CD: Up and Running by Andrew
Block and Christian Hernandez (O’Reilly). Copyright 2025
Andrew Block and Christian Hernandez, 978-1-098-14200-
1.”
If you feel your use of code examples falls outside fair use
or the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and
business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our

mailto:permissions@oreilly.com
https://oreilly.com/

online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and
a vast collection of text and video from O’Reilly and 200+
other publishers. For more information, visit
https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this
book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-827-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata,
examples, and any additional information. You can access
this page at https://oreil.ly/argoCD_UR.
For news and information about our books and courses,
visit https://oreilly.com.

https://oreilly.com/
mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/argoCD_UR
https://oreilly.com/

Find us on LinkedIn: https://linkedin.com/company/oreilly-

media.
Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments

Andy Block:

They say that it takes a village to raise a child, and this
sentiment is certainly true for both the GitOps and Argo CD
communities. It would not be possible to produce a
publication, such as this book on Argo CD, without the
continued support of the open source community. In
particular, I would like to thank Dan Garfield, who has
helped shed light into what it takes to build a business that is
focused primarily on GitOps. In addition, I wanted to also
thank Michael Crenshaw. whose unbelievably deep
knowledge of Argo CD has helped me time after time better
understand all of the minute details of the project. These
insights directly translated into the ongoing support that I
am able to provide to community members along with
material within this book.
Of course, I could not forget my colleagues at Red Hat who
have helped and supported my endeavors within the GitOps
space. From Raffaele Spazzoli and our endless conversations
on Helm, Kustomize, and various GitOps patterns to Gerald
Nunn and our thoughts and designs for what it takes to
properly architect and operate GitOps as a platform service
within some of the most regulated organizations in the
world. And, to the entire OpenShift GitOps team. Thank you
for making me feel like an extended member of your team,
where our ongoing collaboration has enabled our customers

https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

to apply GitOps principles at scale, using some of the most
secure and trusted software available.
Finally, Argo CD is just one of many GitOps tools in the
industry. There will never be a single GitOps tool, and we are
all better because of that fact. A big thank you goes out to
those in the GitOps community, including Scott Rigby, Alexis
Richardson, and Stacey Potter. Your continued partnership
and collaboration is truly appreciated!

Christian Hernandez:

The path to being a subject matter expert in a particular
technology—to the point where you write a book—isn’t a
path you take alone. There have been many people in my
career who have helped me get where I am. I would like to
take this opportunity to give many thanks to those people.
My time at Red Hat was paramount to my development, and
I couldn’t have done it without the mentorship and
leadership I received from Scott Cranton, Chris Morgan, and
Erik Jacobs. Your willingness to let me grow was pivotal in
my success. I cannot express my gratitude enough for
everything. Also, to my “OG OpenShift TigerTeam”
coworkers. We were lucky enough to work together during
the best time of my career. Being able to work with experts
in the field propelled me to be the best I can be. Also, a very
special thanks to Chris Short, who always pushed me to be
the “Kelsey Hightower of GitOps.”
Lastly, I would like to thank Hong Wang, Jesse Suen, and
Alexander Matyushentsev. Creating the Argo Project was a
bold and brave thing to do (even if you all didn’t know it at
the time). Growing with the Argo Project has been a
privilege; and now working with you all directly has
elevated me to a level of expertise that I wouldn’t have

imagined. I am proud to be a part of your journey, and I
wouldn’t be here without what you three have created.

Both:

We are deeply grateful to the tech reviewers for their
meticulous attention to detail and technical expertise, which
greatly enhanced the accuracy and quality of this book. We
would like to thank the following:

Vladislav Bilay

Manuel Dewald

Werner Dijkerman

Nadir Doctor

Predrag Knežević

Jess Males

Benjamin Muschko

Gerald Nunn

Lipi Deepaakshi Patnaik

Rick Rackow

Your invaluable feedback helped us refine complex
concepts, ensuring clarity and precision for readers. The
insights and suggestions you provided were instrumental in
strengthening the technical depth and real-world
applicability of the content. We sincerely appreciate the time
and effort you dedicated to reviewing, catching errors, and
offering thoughtful recommendations. This book is stronger
because of your contributions, and we are truly thankful for
your commitment to making it the best resource possible.

Chapter 1. Introduction to

Argo CD

Kubernetes caused a disruption within the tech industry.
Its role as the cornerstone of the entire cloud native
ecosystem cannot be overstated. The Cloud Native
Computing Foundation (CNCF) was started with
Kubernetes as its foundation, and as a result, many open
source tools were developed around premises of leveraging
the immutable and declarative nature of Kubernetes. As
popularity and adoption grew for Kubernetes, so did the
cloud native ecosystem as a whole. The need for different
use cases led to the development of Kubernetes-native
projects and tools (along with various startups) that were
needed to further springboard the ever-growing adoption of
Kubernetes and cloud native architecture.
One of the many challenges that came with Kubernetes
adoption was the issue of “cluster sprawl.” Cluster sprawl
(not very much different from VM sprawl back when
virtualization hit the scene) became apparent and the idea
of “clusters as cattle” became popular, replacing the old
idea of a “central cluster for everything” that was
popularized by virtualization platforms. The need to be able
to manage the lifecycle of many clusters at scale became
something that was paramount to the success of
Kubernetes and cloud native deployments. This is
something that early adopters of Kubernetes ran into while
they were operationalizing their cloud native architecture.
Throughout this chapter, we will dive into these themes
and also walk through what Argo CD is and the role it plays

in the Kubernetes and cloud native ecosystem.

What Is Argo CD?

When Kubernetes came onto the scene in 2014, it quickly
became the way to manage containerized workloads at
scale. Kubernetes’ declarative nature made it easy for end
users and enterprises to explicitly describe the end state of
their application deployments—while leaving the work up
to Kubernetes. This new way of working came a long way
from the more traditional imperative methods that had
existed for years. Still, many users found themselves using
Kubernetes in an imperative fashion. End users and
enterprises were still managing Kubernetes configurations
(i.e., YAML) manually or via event-based triggers and
scripts. For example, users replaced their ssh commands
with kubectl commands, and applied these Kubernetes
configurations manually, leaving them largely untracked.
Argo CD is one of the many tools that came out of the need
to manage application deployments across multiple
Kubernetes clusters spanning various environments.
Furthermore, it became important to not just manage these
deployments, but also keep them tracked and versioned.
Intuit was an early adopter of Kubernetes and knew all too
well the issues with adopting such a fast-moving
technology. This led Intuit to make a strategic move to
become more of a technology company, and it doubled
down on this strategic move by acquiring Applatix in 2018.
This acquisition provided the foundation needed to create
the Argo Project. The Argo Project became the home to
various DevOps-based toolsets, and their capabilities
helped quickly onboard developers into Kubernetes,
microservices, and cloud native architecture as a whole.

https://oreil.ly/hPi57

One of the main hurdles in adopting Kubernetes was the
user/developer experience. Kubernetes is a powerful
platform, but it was really built with the expectation that
you are familiar with a lot of system operation experience.
The principal of the Argo Project was to build toolsets from
the ground up with not only GitOps in mind, but also a
developer experience mindset at the forefront—which is
where Argo CD comes into play.
Argo CD is one of the tools that lives in the Argo Project. It
was written with GitOps and developer experience in mind;
it is designed to deliver changes/updates to a Kubernetes
cluster or to many clusters at massive scale. Argo CD
detects and prevents drift within Kubernetes clusters by
working with YAML, stored in a Git repository and using
native functionality found in Kubernetes. While Argo CD is
known for its ability to implement GitOps, it also has been
used as a generic DevOps tool for those who are using
Kubernetes to deploy and manage workflows in a non-
GitOps environment. This flexibility has led Argo CD to be
one of the most popular toolsets in the CNCF ecosystem.
Argo CD works with Helm and Kustomize to further provide
flexibility and render the YAML produced by those tools
before applying them to the Kubernetes cluster. We will
look at Helm and Kustomize more closely in Chapters 3 and
4.

Why Argo CD?

There are many reasons why DevOps professionals have
adopted Argo CD. Part of the mass adoption of Kubernetes
meant that many of the imperative, event-driven ways of
deploying applications weren’t taking advantage of the

benefits of the declarative approach Kubernetes had built
in.

Unifying Application Definitions

Argo CD took the different pieces that made up an
application running on Kubernetes and turned them into a
unified, deployable unit of work. Typically, an application
deployment is made up of individual Kubernetes objects
(for example a deployment, a service, and a namespace),
and they each were managed individually—coupled loosely
together. Argo CD brought these related objects into an
atomic unit of work known as an Argo CD Application.
Here, an end user can have these Application definitions,
configurations, and environments managed in a declarative
and version-controlled way. Application deployments and
lifecycle management could now be automated, auditable,
and easy to understand. Argo CD Application specifics will
be covered in Chapters 4 and 5.

Configuration Drift

Configuration drift has been an issue in application
deployments for as long as we have been delivering
applications. Still, this issue has been plaguing us for quite
some time, and many tools have been developed to combat
this issue. Infrastructure as code (IaC) tools aimed to solve
a lot of these issues, but it wasn’t until immutable
infrastructure (Kubernetes hand in hand with containers)
came about that allowed us to truly solve this issue of
configuration drift. Argo CD takes advantage of the
reconciliation loop of Kubernetes and keeps deployments
from drifting from their source of truth—whereas event-
driven processes tend to have to wait for an event to
trigger a reconciliation. Many DevOps professionals rely on

Argo CD in order to prevent configuration drift at scale.
Bringing clusters under the control of Argo CD gives
DevOps professionals a sense of trust that the environment
is as it should be.

Rollback and Disaster Recovery

Argo CD can be used to expedite the rollback/disaster
recovery process. Since Argo CD keeps your cluster in sync
with its source of truth, you only need to revert your source
of truth (usually in Git) to a working state. Argo CD will
then work to set your cluster back to its desired state.
Similarly, disaster recovery works the same way. DevOps
professionals use Argo CD to recover by simply installing
Argo CD and pointing to a specific target state in Git
(whatever version that may be), and Argo CD handles the
rest.

The GitOps Movement

It seems that GitOps has quickly become the tech
industry’s latest and greatest buzzword and marketing’s
favorite term to throw around. But when searching for the
term GitOps, you will likely come across a lot of concepts
that seem to be unrelated to one another. You are also
likely to find a lot of concepts that you are familiar with. So,
is GitOps something that application developers/software
engineers use? Or is it designed more for infrastructure
teams or system administrators to use in managing their
environments? Maybe it is just a spin or a new term for
DevOps, or continuous integration/continuous deployment
(CI/CD).
In actuality, GitOps takes different approaches to
automation, application delivery, infrastructure

management, and security and brings them under a single
management umbrella.
The topic of GitOps almost always naturally starts with a
discussion around DevOps, a term on which GitOps is
clearly based. The DevOps movement was born out of the
need to automate application delivery. It allows the teams
that wrote, delivered, and supported the software to work
together to support a common goal. DevOps isn’t
necessarily a department but rather a culture in your
organization. So how does GitOps relate to DevOps? That’s
simple: GitOps is DevOps. GitOps is the natural progression
of DevOps, and it implements the best of what DevOps
practitioners were already doing—they just didn’t know it
yet.

Origins of GitOps

Weaveworks is credited with the creation of the GitOps
name. The story can be summarized that back in 2017,
Weaveworks was operating as a software-as-a-service
(SaaS) company that hosted its customer’s applications on
its platform using Kubernetes. There was once an incident
where a mistaken configuration change (a case of “fat-
fingering a config”) took down its entire platform, but the
DevOps engineers were able to bring back the system in a
relatively short time. When asked how they did it so
quickly, they described their process and procedures,
which Weaveworks CEO and cofounder Alexis Richardson,
called GitOps.

OpenGitOps Principles

In October 2021, the GitOps Working Group released the
OpenGitOps Principles, a set of principles for managing

https://github.com/weaveworks
https://oreil.ly/UTE3V

software systems. With this release, the working group
aimed to define what GitOps actually is and not let it
succumb to being just another buzzword. The current
version, version 1.0, has four principles.

Principle 1: Declarative

The first OpenGitOps principle states:

A system managed by GitOps must have its desired state

expressed declaratively.

The reference to the desired state means that you
represent the way you want the system to work in an “end
state,” which will be the final state achieved by changes
made by the GitOps environment. This is the difference
between imperative and declarative; as you’ll recall,
Kubernetes operates in a declarative manner.

Principle 2: Versioned and Immutable

The second OpenGitOps principle states:

Desired state is stored in a way that enforces

immutability, versioning, and retains a complete version

history.

The canonical example of the “versioned and immutable”
principle is Git, which is why GitOps picked up this term for
its name. The functionality of Git makes it versioned and
immutable because each change is tracked in a new version
without altering previous versions. The idea is that you can
revert back to a previous version while preserving an audit
of all the changes that have been made.

Principle 3: Pulled Automatically

The third principle states:

Software agents automatically pull the desired state

declarations from the source.

This principle is where GitOps starts to differentiate itself
from a traditional event-driven CI/CD process.
Although triggering changes and updates via webhooks or
other events is a valid way to automate builds, it’s not (by
itself) GitOps. GitOps software agents (or GitOps

controllers) check the desired state by pulling and checking
declarations from Git at regular intervals, which means
polling as well as pulling. In GitOps, there is no webhook
that needs to be hit. Instead, there is a reconciliation loop.
This leads us into the final principle.

Principle 4: Continuously Reconciled

The final principle is another place where GitOps
differentiates itself from event-based workflows. It states:

Software agents continuously observe the actual system

state and attempt to apply the desired state.

This principle directly mirrors the functions of the
Kubernetes controllers, but GitOps applies it to a whole
application or infrastructure stack instead of just one
object. We’ve seen that the desired state is pulled from
configuration information that is versioned and stored in an
immutable storage system. If there is a difference between
the desired and running states, they are reconciled by
changing the running state. This is happening continuously
at a regular interval. “Continuous” here is understood in
the industry to mean that reconciliation continues to
happen at a chosen interval of time. Reconciliation doesn’t
have to be instantaneous.

Comparison of GitOps Tools in the

Ecosystem

The need to have all your systems in sync has existed for
quite some time. This is where the paradigm of
“infrastructure as code” came about, along with many
tools, such as Terraform, Ansible, Puppet, and Chef (among
others). Kubernetes was no different. As it gained traction,
the need to be able to manage deployments at scale (and
keep them in sync) was as big as ever. From that need
sprung two major, cloud native GitOps controllers: Flux and
Argo CD.

Flux

Flux originated from the engineers at Weaveworks. The
tool was developed as a means to “keep the lights on” for
Weaveworks’ managed services. This tool was refined and
then released as an open source project in the CNCF. Its
current iteration, Flux v2, is built upon the idea of toolkits.
It includes individual Golang libraries that use the Unix
philosophy of “do only one thing, but do it well.”
Technically speaking, Flux v2 is just software that is built
using the toolkit, and it is possible to build your own
software around these toolkits.

Argo CD

Argo CD, as explained earlier, was developed inside of
Intuit. The goal of Argo CD was to quickly on-ramp Intuit
developers to their Kubernetes-based platform. It can be
seen as an early attempt at platform engineering, and Argo
CD can be seen as Intuit’s internal developer platform
(IDP). The idea was to abstract away all the nuances of
deploying and managing applications onto Kubernetes.

https://fluxcd.io/

Argo CD wasn’t the first tool that was developed at Intuit,
because other complementary (DevOps-focused) tools were
also needed. Together, they were packaged as the Argo
Project (described in more detail later in this chapter) and
donated to the CNCF.

Comparison of Flux and Argo CD

A deep comparison of these two tools is beyond the scope
of this book. The main differences are really in the
philosophical approach of how to manage a Kubernetes
platform. Notably, Argo CD only wants to work on raw
YAML, and it wants to mimic the functionality of kubectl as
much as possible.
Take, for example, how each tool handles Helm. Flux uses
the Helm Golang library to deploy Helm charts, whereas
Argo CD renders the raw YAML (using the helm template
command) in order to apply it to the Kubernetes cluster.
So, how does that impact Argo CD users? It means that
running helm ls will not return anything against a
Kubernetes environment managed by Argo CD, whereas
one managed by Flux will. The trade-off is that in an Argo
CD-managed environment, diffing (the process of seeing
what’s different in the running state versus the desired
state) is possible with a Helm chart deployment, whereas in
a Flux system, you cannot see the diffs.
Another big difference is that, although you can get a UI
via Weave GitOps, there is no native UI for Flux because
Flux is strictly a CLI/API-based tool. Argo CD is built as a
“complete” product, which includes a rich UI, RBAC
system, and other multi-tenant tooling.
Deciding which tool to use has many factors, and that level
of nuance is outside the scope of this book. From here

forward, we’ll go on the assumption that you have chosen
Argo CD as your GitOps tool of choice. After all, why else
would you be reading this book!

The Argo Ecosystem

Normally, when people say or think Argo, most folks who
are already well familiar with the cloud native ecosystem
automatically think Argo CD. However, Argo CD is just one
of the subprojects that are part of the overarching Argo
Project. The Argo Project is a suite of DevOps tools aimed
at making the lives of SREs and developers easier and at
quickly onboarding those who aren’t familiar with
Kubernetes. In fact, many are surprised to learn that Argo
Workflows is the most popular of the toolsets within the
projects (based on the number of GitHub stars). The tools
within the Argo Project are:
Argo Workflows

A cloud native workflow engine that is popular with the
AI/ML community and recently has seen an increase in users
adopting Workflows for CI

Argo CD

A recent hot topic in the cloud native world; Argo CD takes a
GitOps approach to managing and deploying applications on
Kubernetes at scale

Argo Rollouts

An advanced progressive delivery controller that works
hand in hand with Argo CD (it can also be used by itself,

independent of Argo CD) to help end users perform Canary
and blue–green deployments using their own
Ingress/ServiceMesh controllers

Argo Events

A generic event bus with dependency management

There is also Argo Labs, an area within the Argo Project
that acts as an “incubation” area for tools that are related
to the Argo Project ecosystem. For example, Argo CD
ApplicationSet (now included with Argo CD), started out in
Argo Labs before being included as a general availability
(GA) enhancement to Argo CD.

Summary

This chapter summarizes the challenges and solutions
within the Kubernetes and cloud native ecosystem,
highlighting the rapid adoption of Kubernetes and the
resulting need for efficient cluster management. A key
issue that emerged with Kubernetes was “cluster sprawl,”
requiring better management tools for handling multiple
clusters at scale. Argo CD, a tool developed under the Argo
Project, addresses these challenges by enabling GitOps for
managing and deploying applications across Kubernetes
clusters. Argo CD integrates with Kubernetes’ declarative
nature to track and version application deployments,
preventing configuration drift and supporting rollback and
disaster recovery processes. The chapter also discusses
GitOps principles, its evolution from DevOps, and the
benefits of using Argo CD compared to other tools like
Flux. Finally, the chapter introduces the broader Argo

https://github.com/argoproj-labs

ecosystem, which includes tools like Argo Workflows, Argo
Rollouts, and Argo Events that together offer a
comprehensive suite for DevOps and Kubernetes
management. With this foundation, you should now have
the context and the why as we dive into implementation-
specific configurations for the rest of this book.

Chapter 2. Installing Argo

CD

Like most cloud native applications, Argo CD features a
microservices architecture that comprises multiple
components and technologies. Each Argo CD component,
working together, helps support a fault-tolerant and robust
system that helps enable the full set of features and
capabilities. Understanding how all of these services work
together in concert provides a greater awareness of the
architecture, their significance, and how they are
incorporated into the overall system as a whole. This
chapter introduces the architecture and design of Argo CD
along with detailing the various ways that it can be
installed in a Kubernetes environment.

Argo CD Architecture

Since Argo CD is a GitOps-based solution designed for
Kubernetes, the architecture emphasizes the use of as
many Kubernetes primitives as possible, which will be
described in detail in this chapter. As introduced in
Chapter 1, Argo CD sources content stored in repositories
and realizes those configurations within a Kubernetes
cluster. But what does that look like, and what are the
components involved?

Kubernetes Controller Pattern

One of the key benefits of using Argo CD, aside from the
capability to define Kubernetes resources within source

repositories and apply them automatically to a cluster, is
that Argo CD can be configured to enforce those
configurations to stay in place, even if they are modified.
This is known as drift management. Argo CD accomplishes
this by implementing a Kubernetes concept called a
controller, which executes a nonterminating control loop
for managing and monitoring the desired state of at least
one resource. Based on a defined configuration, the
controller will ensure that the current state matches the
desired state.
For example, Deployments are a common method for
registering workloads into Kubernetes, and as part of the
creation of a Deployment resource, a ReplicaSet is also
created, which will ensure that a specified number of pods
are always running. Kubernetes accomplishes this through
one of the built-in Kubernetes controllers, the ReplicaSet
controller, which monitors all pods that have been created
for a given ReplicaSet and ensures that the actual state of
the resource(s) in the cluster matches the expected and
defined state. If the actual state does not match the
expected state, the controller will reconcile the difference
until the current state matches the defined state.

NOTE

Chapter 5 will cover divergence and diffing.

This controller pattern applies to not only the resources
that end users manage but is also foundational for Argo CD
itself. The properties that drive the core configurations of
Argo CD are stored within ConfigMaps and Secrets, which
include:

Baseline Argo CD server details

Connectivity details to external source repositories

Security

However, as one can imagine when designing a system for
which there may be a complex set of properties, there is a
limitation of the types of properties that can be stored
within the simple key/value constructs provided by not only
these Kubernetes resources, but also any of the API’s
resources that are included with a standard Kubernetes
installation.
Argo CD is not alone when it comes to solutions for adding
new ways of managing resources within a Kubernetes
environment. This need led to the creation of custom
resources, which are implemented through Custom
Resource Definitions (CRDs) and enable an end user to
register a new resource type within Kubernetes. By
defining a new resource type, not only can the properties of
this resource be defined (so that consumers can become
aware of and comply with the acceptable fields and their
rules), but a new API endpoint in the Kubernetes API
server is also registered to facilitate the management of
these resources.
A concept similar to a Kubernetes controller, known as an
operator, builds upon the primitives of a Kubernetes
controller for managing the current and desired state of
resources in a Kubernetes cluster and applies them to
CRDs. Given that custom resources typically have domain-
specific values and meaning associated with them, an
operator is built with this domain-level knowledge of how to
interpret those values and ensure that the state of
resources within Kubernetes matches those defined values.

Argo CD makes use of several custom resources, and their
properties are the primary vehicle to enable end users to
manage their Kubernetes resources using GitOps-based
principles. The use of Kubernetes controllers and custom
resources is fundamental to the overall Argo CD
architecture.

Argo CD Architecture Overview

Given that Argo CD implements a microservices-based
architecture, there is no single Argo CD component, but
instead multiple distributed systems that act in a
coordinated fashion. Figure 2-1 depicts the overall Argo CD
architecture, including the relationship between each of
the services and resources.

Figure 2-1. Overall Argo CD architecture

Custom resources

Argo CD makes use of several custom resources to
declaratively define business logic and APIs to implement
GitOps management capabilities. Three custom resources
are provided with each installation of Argo CD:

Applications

AppProjects

ApplicationSets

The purpose of each custom resource will be described in
more detail throughout the course of this book. However, it
is important to note that Argo CD interacts with the
Kubernetes cluster using these CRDs. This, effectively,
makes these CRDs your interface for managing your
Kubernetes cluster/clusters.
The Application controller and ApplicationSet controller
are both Kubernetes Operators (and by definition, also
controllers) that continuously monitor the state of
Application and ApplicationSet resources, which represent
an application instance deployed to environments where
the live state in the Kubernetes clusters is compared
against the desired state from source repositories. In
addition, they are also responsible for performing lifecycle
events associated with the content that they are
reconciling, such as the ordering of resources as they are
being applied. More details related to this feature are
found in Chapter 5.

Repository Server

The Repository Server maintains a local cache of the
remote content source (either a Git or Helm repository)
that will be translated into Kubernetes manifests. It is
responsible for generating resources based on parameters,
including:

Repository type

Repository source location

Path within the repository

Template tool-specific parameters

In addition, custom plugins (described in detail in
Chapter 11) are also executed within this component, as

they can influence the generation of the Kubernetes
resources.

API server

The API server is a gRPC/REST-based server (the API
server accepts both) that exposes services for managing
key configurations that are integral to the platform,
including:

Application management and status reporting

Invocation of application operations including
syncing, rollback, and additional user-defined
actions

Cluster and repository management

RBAC enforcement

Several other components within the Argo CD ecosystem
heavily rely on this asset for their normal operation
including the UI, CLI, and external CI/CD systems.
In addition to acting as an API server, a web UI is also
exposed, which provides a method for visualizing
Application activity as well as supporting the management
and configuration of Argo CD.

Redis

Redis is an in-memory database and provides local caching
capabilities to reduce the dependency on external systems.
While its primary purpose is to cache the contents of
remote repositories, it also supports storing the state of the
associated Kubernetes resources that users are managing
from within repositories as well as the connection status of
remote repositories and clusters. The content of the cache
is not persisted and is always rebuilt at startup.

Command-line interface (CLI)

There is a command line–based utility for interacting with
Argo CD. Support is available to manage the configuration
of the platform itself as well as the lifecycle of applications.
Communicates via the Argo CD API and includes a superset
of the capabilities that are provided by the Argo CD user
interface (UI).

Single Sign On (SSO)

Argo CD provides user management capabilities for
interacting with the platform. These users can be defined
locally within Argo CD or can be sourced from an external
source. When integrating with an external source, OpenID
Connect (OIDC) authentication is supported. For external
identity providers that do not provide a direct OIDC
integration, an instance of the Dex identity server is
provided to act as a bridge between Argo CD and the
remote identity provider.

Notifications

Notifications are included as part of the standard
installation of Argo CD starting in version 2.3. This feature
provides a mechanism for monitoring and triggering
notifications to external systems based on the lifecycle of
applications through the use of templating capabilities and
a catalog of included triggers. Argo CD Notifications can be
configured to send information to (but are not limited to)
Slack and email, and can also invoke other webhooks.
Understanding the current state of systems and
environments is key when running production systems, and
Argo CD notifications will be covered in greater detail in
Chapter 13.

Argo CD Key Patterns

As may be evident by this point, now that the foundational
architecture has been introduced, Argo CD makes use of
several key patterns; their significance will become even
more apparent as each topic is described.
First, there is an emphasis on defining resources in a
declarative fashion, whether they be one of the provided
custom resources or a core configuration of the Argo CD
server itself that is stored in a ConfigMap or Secret. Not
only does this trait implement one of the most important
concepts in GitOps, but it also enables the configuration of
Argo CD itself to be managed via GitOps and Argo CD.
Building upon the first theme, where each resource is
managed in a declarative fashion, Argo CD also makes use
of a stateless architecture, meaning that configurations are
the state of the system that can be rebuilt at any time. This
approach makes Argo CD a stateless system from an
architectural point of view. If there is either a desire or
need for state to be tracked against a particular resource,
the status field, a standard property and method found on
many Kubernetes resources, can be used to provide
historical context. In addition, while Redis is included as a
caching mechanism within the Argo CD architecture, it is
used as a volatile cache without any long-term persistence.
Finally, Argo CD enables extensibility. Not only are there
multiple repository types from which GitOps-related
content can be sourced, but there is also built-in support
for templating resources using a number of popular tools,
including Kustomize, Helm, and Jsonnet. Additional user-
defined tools can also be added to not only integrate with
additional external resources but also enhance how assets
are rendered.

Now that we’ve covered the basics of the Argo CD
architecture, including the primary components, let’s shift
gears to the methods that are supported for installing Argo
CD.

Installing Argo CD

Just as Argo CD supports the use of multiple methods and
tools, such as Kustomize and Helm, to generate resources
that can be applied to a Kubernetes cluster, many of these
same tools and approaches can be used to install Argo CD
itself. The determination of the particular approach
depends largely on user preference as well as if there are
any specific requirements or constraints, such as team or
organizational guidance or restrictions. In addition to the
tool that is used to facilitate the execution of the
installation, Argo CD also supports several installation
types, which influence the resources that are included in
the deployment as well as the configuration of the deployed
resources. Some of these topics will be expanded upon in
subsequent chapters.

Installation Types

Argo CD as a GitOps tool, similar to many other tools in this
space, is utilized by a variety of personas who each have
their own set of business domains and goals. Since there
are a multitude of use cases and requirements that may be
desired, Argo CD supports multiple installation
configurations, and the determination of a particular
configuration depends on the answer to these key decision
points:

Who are the users and consumers of the platform?

What is the scope Argo CD should manage?

Is high availability a concern?

What are the security requirements?

What are the bootstrapping and automation needs?

These options are illustrated in Figure 2-2.

Figure 2-2. The options and considerations when installing Argo CD

The first decision point is the type of installation that Argo
CD should serve. In most cases, Argo CD will be consumed
by multiple individuals that may span across multiple teams
within an organization. Additionally, most organizations
desire to make use of the full set of features that are
provided as part of a standard deployment of Argo CD (we
covered these in the previous section). This is known as a
multi-tenant type of installation, and it is most commonly
utilized as it provides the full set of capabilities provided by
Argo CD.
Alternatively, an option is available to perform an
installation that includes only the minimal set of
components to support normal operation—known as a core

install. This approach does not include the API server or UI,

SSO, or notification features. In addition, each component
is also optimized to consume a minimum amount of
resources in a non-highly available configuration (more on
the topic of high availability later in this chapter). While a
core deployment is not intended to appease the masses,
this approach is beneficial for individual users who manage
Argo CD from both an administrative and end-user
perspective where there is not a desire to leverage the full
multi-tenant feature set of Argo CD, but there is still a
desire to take advantage of the primary GitOps capabilities.
The next decision point that must be addressed is the scope
that Argo CD should manage. By default, Argo CD has the
authority to control resources across an entire Kubernetes
cluster they are deployed within as well as any external
clusters under its management. This broad range of access
is the preferred option, especially when Argo CD is being
used by Kubernetes cluster administrators, as it does not
introduce any limitations on the resources that can be
managed. However, another approach, known as
namespaced mode, that is available is to deploy Argo CD
within a specific namespace and to allow Argo CD to only
manage resources within specific namespaces. This option
is used in multi-tenant environments where individual
application teams are given the autonomy to operate their
own instance of Argo CD but are not granted access to
manage cluster-scoped resources. An in-depth look into the
use of a namespaced deployment of Argo CD and its use
case will be discussed in Chapter 8.
Finally, to support production environments, each of Argo
CD’s components can be configured in an optimized
manner to ensure greater resiliency and performance
needs. This approach is accomplished through a
combination of increasing the replica count as well as

enabling tunable parameters within each component.
However, there are certain considerations that must be
followed so that Argo CD can operate in an optimized
fashion, as merely increasing the replica count of all
components uniformly can actually cause a performance
degradation. Fortunately, Argo CD provides manifests
supporting both clustered and namespace-scoped
deployments that illustrate the types of configurations
necessary to enable a highly available deployment.
Now that both an overview of the Argo CD architecture and
an understanding of the deployment approaches have been
addressed, it’s time to see Argo CD in action by working
through the first hands-on activity.

Deploying Argo CD

In due course throughout the remainder of this book, most
of the installation types and approaches will be realized.
However, let’s start off by performing a basic installation of
Argo CD to our kind environment.

Deploying Argo CD using YAML manifests

The simplest and most straightforward option is to use one
of the raw YAML-formatted manifests that include all of the
resources and configurations within a single document, and
in particular, a non-highly available, multi-tenant-based
deployment of Argo CD.

NOTE

High availability is covered in Chapter 13.

First, ensure that a fresh kind cluster is running:

kind create cluster

NOTE

By default, the name of the cluster that the kind tool creates is called kind.
You are free to change the default behavior by specifying an alternate name
using the --name parameter of the kind create cluster command or by setting
the environment variable KIND_CLUSTER_NAME with the desired name.

Once the cluster has started, your kubectl context will be
automatically updated and ready to utilize the newly
created cluster. Execute the following commands using
kubectl to create a new namespace called argocd and to
deploy Argo CD in the previously described configuration:

kubectl create namespace argocd

kubectl apply -n argocd \

-f https://raw.githubusercontent.com/argoproj/argo-

cd/stable/manifests/install.yaml

After a few moments (to allow for the associated images to
be downloaded to the kind cluster), the pods in the argocd
namespace can be queried with a result similar to the
following:

kubectl get pods -n argocd

NAME READY STATUS RESTARTS

AGE

argocd-application-controller-0 1/1 Running 0

46s

argocd-applicationset-controller-74575b6959-8dc7l 1/1 Running 0

46s

argocd-dex-server-64897989f8-qg8pm 1/1 Running 0

46s

argocd-notifications-controller-566bc99494-7vj82 1/1 Running 0

46s

argocd-redis-79c755c747-867nk 1/1 Running 0

46s

argocd-repo-server-bc9c646dc-6sd86 1/1 Running 0

46s

argocd-server-757fddb4d7-xgdxh 1/1 Running 0

46s

The standard deployment of Argo CD depicted here
contains each of the primary components that are included
with Argo CD, so it is an ideal baseline to work from.
The UI is one of the key features that sets Argo CD apart
from other GitOps solutions. By default, the set of
resources that were applied to the Kubernetes cluster did
not include any configurations or resources to expose
access to Argo CD outside the cluster. While there are
several approaches that can be used to access Argo CD
externally, such as creating a LoadBalancer service type or
using an Ingress, to demonstrate baseline functionality, the
port forwarding capability of the kubectl CLI can be used to
connect to Argo CD without any additional actions.
Before moving on, confirm the successful installation of
Argo CD by accessing the UI. To do this, execute the
following command to initiate the forwarding of port 8080
from the local machine to the Argo CD server service,
which will expose access to the UI:

kubectl port-forward svc/argocd-server -n argocd 8080:443

The command will establish a tunnel to facilitate the
connection and block additional commands from being
entered while the tunnel is established. If additional
commands need to be executed while ports are forwarded,
launch another terminal.

With access to the Argo CD UI available due to the port-
forward tunnel, navigate to https://localhost:8080.

NOTE

By default, Argo CD generates a self-signed TLS certificate to enable secure
transmission between itself and the browser. Since this certificate is not
trusted by the browser, a warning is displayed. Depending on the browser
being used, there will be an option to proceed even though the certificate is
not trusted, and then the Argo CD login page will be displayed.

To log in, admin is the username of the Argo CD
administrator, and the password is a secret with the name
argocd-initial-admin-secret. Obtain the password by
executing the following command:

kubectl -n argocd get secret argocd-initial-admin-secret -o \

jsonpath="{.data.password}" | base64 -d; echo

Log in using admin as the username and the password that
was obtained from the prior command. Upon successful
login, the Argo CD dashboard is displayed, as shown in
Figure 2-3.

https://localhost:8080/

Figure 2-3. The Argo CD Applications page

The dashboard contains a list of the current applications

that have been registered to Argo CD and their current
status. Since this instance does not have any applications
registered, the dashboard is empty. Feel free to navigate
around the UI as you see fit. However, a more in-depth
overview of the user interface will be covered in Chapter 3.

High availability

The standard deployment of Argo CD is ideal for getting
started but is not suitable for production environments due
to the fact that there is only a single replica for each
component. In case one of the components fails (due to an
error or issue with the underlying infrastructure), it will
cause a degradation of functionality as one or more of the
resources will become unavailable. To mitigate these
concerns, an alternate set of YAML definitions is available
for both cluster and namespaced modes of operation. The
key difference between these sets of resources and those
that were deployed previously is that not only have
additional tuning options been implemented, but multiple
replicas of each service have also been defined. This means

that if a failure does occur to one of the services, the
remaining replica will be able to take on requests and
continue normal operation in a degraded state until the
original replica returns to normal operation.
Given that the topic of high availability is just one of the
many traits of a production system, this will be expounded
upon in Chapter 13 as part of the discussion on the
considerations for operating Argo CD at scale.

Deploying Argo CD using Helm

Argo CD can also be installed using a Helm chart. A Helm-
based installation approach has advantages over YAML
manifests, as the resources that are installed can be
customized using the dynamic templating capabilities
provided by Helm. For example, entire components can be
enabled or disabled, as well as specific properties can be
tailored, whereas these options would not be possible using
the YAML-based manifest approach.

To install Argo CD using Helm, first be sure that your kind
cluster does not have any previously created resources
deployed. If Argo CD is still running from the prior section,
the kind cluster can be deleted and re-created, or the
contents from the prior section can be removed.

To delete and re-create the kind cluster, use the following
commands:

kind delete cluster

kind create cluster

Alternatively, instead of needing to re-create the entire kind
cluster, the YAML-based manifest installation of Argo CD
can be uninstalled by removing the resources from the
same manifest and then deleting the argocd namespace:

kubectl delete -n argocd \

-f https://raw.githubusercontent.com/argoproj/argo-

cd/stable/manifests/install.yaml

kubectl delete namespace argocd

With a fresh kind cluster available, proceed to deploy Argo
CD using Helm.
First, add the Argo CD Helm repository:

helm repo add argo https://argoproj.github.io/argo-helm

Install the Helm chart using the default configuration and
create a new namespace called argocd using the following
command:

helm upgrade -i argo-cd argo/argo-cd -n argocd --create-namespace

NOTE

Either the helm install or helm upgrade command can be used to install the
Argo CD chart. When the helm upgrade command is used with the -i
parameter, Helm will check if there is an existing release found. If a release
is not found, the chart will be installed instead of upgraded. The benefit of
using helm upgrade in this situation is that the same command can be issued
regardless of installing a chart for the first time or upgrading an existing
release. The helm install command can only be used when installing a chart
for the first time.

Another benefit of Helm is that chart creators can include
additional information that is displayed whenever a chart is
installed or upgraded, known as NOTES. After executing
the helm upgrade command previously, the contents of the
NOTES document in the chart was displayed, which
provided a set of next steps, including how to access the

Argo CD UI and how to obtain the password for the Argo
CD admin user.

Query the running pods from the argocd namespace and
take note that the set of resources are available, as they
were using the YAML manifest approach (albeit with
slightly different names, as the Helm chart prefixes each
resource with the name of the Helm release):

kubectl get pods -n argocd

If desired, the Argo CD UI can be accessed in a similar
manner, as described in the previous section, and the exact
steps in this instance can be found within the provided
Helm NOTES output.
While only a basic deployment of Argo CD was described in
this section, the full set of tunable parameters provided by
the Argo CD Helm chart can be viewed by listing the
available chart values:

helm show values argo/argo-cd

The use of Helm values within the Argo CD Helm chart
enables a greater level of customization and simplifies the
initial configuration when deploying Argo CD. These values
will be explored in subsequent chapters, especially in
Chapter 13.

Argo CD Operator

Another method to install Argo CD is the Argo CD
Operator, which can be found on the OperatorHub.
Beyond installation, the Operator helps to automate the
process of upgrading, backing up, and restoring as needed,
removing the human as much as possible. In addition, the

https://oreil.ly/XAF4v

Operator aims to provide deep insights into the Argo CD
environment by configuring Prometheus and Grafana to
aggregate, visualize, and expose the metrics already
exported by Argo CD.
The Operator aims to provide the following, and is a work
in progress:

Easy configuration and installation of the Argo CD
components with sane defaults to get up and
running quickly

Seamless upgrades provided for the Argo CD
components

The ability to back up and restore an Argo CD
cluster from a point in time or on a recurring
schedule

Aggregated and exposed metrics for Argo CD and
the Operator itself using Prometheus and Grafana

Argo CD components that can autoscale as
necessary to handle variability in demand

In this book, we will focus on using Helm as the way to
install and manage Argo CD; however, it’s good to get
familiar with other installation methods.

Summary

This chapter provided an overview of the architecture and
components that are included as part of a deployment of
Argo CD. In addition, two of the most common approaches
for installing Argo CD, YAML manifests and Helm charts,
were introduced and used to deploy Argo CD to a kind
cluster. Finally, the Argo CD was accessed using the UI to

confirm a successful installation. The next chapter expands
upon the use of the UI and describes the various different
methods available that can be used to manage and interact
with Argo CD.

Chapter 3. Interacting

with Argo CD

Argo CD includes a fully declarative configuration model
which supports a hands-off approach to GitOps and the
management of a GitOps server. However, in some cases,
more direct methods will be needed for interacting with the
Argo CD server. In the previous chapter, we covered the
Argo CD UI, which is one method for interacting with the
platform as it provides a visual approach to the current
state of GitOps. While the UI may be one of the most
common methods for utilizing Argo CD, there are additional
mechanisms to choose from, including a fully functional CLI
and RESTful API. This chapter builds on the foundational
concepts established in Chapter 2 for accessing and
configuring Argo CD along with introducing several
additional approaches that can be employed depending on
the use case or preference.

The User Interface in Depth

In Chapter 2, the UI was used as a way to access Argo CD.
However, when deployed to the kind cluster, it required
establishing a connection to the server component using
the kubectl port-forward command. While this was
acceptable for initial testing and validation, it is by no
means how one should utilize a service long term. A more
robust approach should be undertaken to provide a more
reliable exposure of services.

One of the most common methods for exposing services
and gaining access to resources within a Kubernetes
cluster is to leverage an Ingress resource. An Ingress
provides a means for exposing services outside of a cluster,
and they are enabled by the use of an Ingress controller,
which will map the incoming request to the backend
service. There are many options as it relates to the
available ingress controllers, where some have additional
features and integrations with the operating environment,
such as a cloud provider.
NGINX is one such popular ingress controller and there is
support for deploying it to a kind cluster. kind clusters can
be customized to include advanced configurations, such as
setting options for kubeadm, the tool for deploying
Kubernetes clusters, and to deploy multiple “nodes” to
support simulating high-availability scenarios.

Another available option is to forward local ports to the kind
node—a capability to enable Ingress into the Kubernetes
cluster and, in this case, the NGINX ingress controller.

Create a new kind cluster and pass an inline definition of a
kind configuration:

cat <<EOF | kind create cluster --config=-

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

- role: control-plane

 kubeadmConfigPatches:

 - |

 kind: InitConfiguration

 nodeRegistration:

 kubeletExtraArgs:

 node-labels: "ingress-ready=true"

 extraPortMappings:

 - containerPort: 80

 hostPort: 80

 protocol: TCP

 - containerPort: 443

 hostPort: 443

 protocol: TCP

EOF

Alternatively, the configuration definition can be placed
into a file and referenced using the same --config
parameter when creating the cluster.
Once the cluster has started, deploy the NGINX ingress
controller using Helm.
First, add the NGINX ingress controller Helm repository
and install the NGINX ingress controller chart:

helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx

helm repo update

Once the repository has been added, create a new file
called values-ingress-nginx.yaml to contain customized
Helm values for the NGINX ingress controller with the
following content:

controller:

 service:

 type: NodePort

 hostPort:

 enabled: true

 updateStrategy:

 type: Recreate

Install the Helm chart for the NGINX ingress controller
using the customized values created previously using the
following command:

helm -n ingress-nginx install ingress-nginx ingress-nginx/ingress-nginx --

create-namespace \

-f values-ingress-nginx.yaml

Wait until the ingress controller is ready:

kubectl wait --namespace ingress-nginx \

 --for=condition=ready pod \

 --selector=app.kubernetes.io/component=controller \

 --timeout=90s

Query the pods and services in the ingress-nginx namespace
to view the resources that were just deployed:

kubectl get pods -n ingress-nginx

NAME READY STATUS RESTARTS AGE

ingress-nginx-controller-56f6595fc8-74t7s 1/1 Running 0

3m33s

kubectl get svc -n ingress-nginx

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S)

ingress-nginx-controller NodePort 10.96.33.103 <none>

80:30579 ...

ingress-nginx-controller-admission ClusterIP 10.96.168.33 <none>

443/TCP ...

Since the kind cluster was created binding port 80 and 443
of the local machine to the kind node, invoking the curl
command against port 80 should verify communication to
the ingress controller:

curl http://127.0.0.1

<html>

<head><title>404 Not Found</title></head>

<body>

<center><h1>404 Not Found</h1></center>

<hr><center>nginx</center>

</body>

</html>

While the 404 error may appear to be a failure, given that
an Ingress resource has yet to be created, the fact that a
response was provided and that it included nginx in the

response body confirms the ingress controller has been
deployed and is operating correctly.
Now that access to the ingress controller has been
confirmed, an Ingress resource must be created so that
access can be achieved through the ingress controller.
Fortunately, the Argo CD Helm chart includes functionality
for configuring this task. When utilizing an Ingress
resource, one of the first steps that must be completed is to
determine the hostname that is associated with the service.
Since NGINX is an Open Systems Interconnection (OSI)
Layer 7 load balancer, routing is performed using the host
header in the request. As requests are received, NGINX
will inspect this header, determine if any of the defined
Ingress resource matches the request, and if so, route the
request to the associated backend service.
The hostname that will need to be specific for the Argo CD
instance will most likely not have an associated value in a
publicly accessible Domain Name System (DNS) server. To
solve this challenge, two options are available:

Modify the contents of the /etc/hosts file on the local
machine.

Use a hosted wildcard DNS service, such as nip.io.

While using the hosted service eliminates the need to make
modifications on the local machine, it potentially introduces
an unnecessary dependency on an external. As such, the
manual modification approach will be demonstrated here.

argocd.upandrunning.local is the hostname that will be used
to refer to the Argo CD instance deployed within the kind
cluster. Modify the /etc/hosts file to add the loopback

address of the local host and hostname so that queries are
resolved and routed appropriately.

Append the following to the end of the /etc/hosts file:

127.0.0.1 argocd.upandrunning.local

With the ingress controller and hostname prerequisites
complete, the Argo CD Helm chart has the capabilities
available to support generating the necessary manifests to
enable Argo CD to be accessed via an Ingress resource.
Create a file called values-argocd-ingress.yaml with the
following content:

server:

 ingress:

 enabled: true

 hostname: argocd.upandrunning.local

 ingressClassName: nginx

 extraArgs:

 - --insecure

Deploy the Helm chart using the values file created
previously:

helm upgrade -i argo-cd argo/argo-cd --namespace argocd --create-namespace \

-f values-argocd-ingress.yaml

This Helm release will appear similar to the release that
was completed in Chapter 2. However, by specifying the
appropriate values, a new Ingress resource was created,
which can be verified by executing the following command:

kubectl get ingress -n argocd

NAME CLASS HOSTS ADDRESS PORTS

AGE

argo-cd-argocd-server nginx argocd.upandrunning.local localhost 80

53s

Given that all of the pieces are in place in order to access
Argo CD using an Ingress resource, open a web browser
and navigate to http://argocd.upandrunning.local, which
should display the Argo CD UI login page.
Argo CD can also be accessed securely through the ingress
controller by using the analogous https:// address. Similar
to when the UI was accessed in Chapter 2, a warning will
be displayed signifying that a connection is attempting to
be established to an endpoint whose certificates are not
trusted by the browser. One key difference is that the
untrusted certificates are related to the ingress controller
and not Argo CD. The default ingress configuration the
Helm chart establishes terminates TLS traffic at the ingress
controller instead of at Argo CD itself. The TLS options that
can be configured in Argo CD will be discussed in more
depth in Chapter 9.
Once again, obtain the password for the Argo CD admin
user from the argocd-initial-admin-secret secret and log in.
Refer back to Chapter 2 (see “Deploying Argo CD using
YAML manifests”) for the command to retrieve the initial
admin password.
Let’s take an opportunity to explore the various
configuration options that are available within the UI. The
default landing page upon login contains the list of
applications that have been registered to Argo CD. An
Application is a source of GitOps content that targets a
particular destination environment and is the primary focus
for end users when using Argo CD. The UI enables the
creation, management, and synchronization of application
resources in a visual, user-friendly manner.

NOTE

Deploying an application will be reviewed in depth in Chapter 4.

Aside from managing applications, the other primary
purpose of the UI is to facilitate the management of the
Argo CD server itself—from within the Settings page (see
Figure 3-1).

Figure 3-1. Argo CD Settings page

Table 3-1 details the configurable options that are made
available from the Settings page of the UI.

Table 3-1. Options available within the Argo CD Settings

page

Setting Description

Repositories Configuration of remote locations
containing resources that will be translated
into Kubernetes manifests

Certificates Management of transport mechanisms to
facilitate secure connectivity to remote
repositories

GnuPG keys Key management to enable the verification
of source control content

Clusters Kubernetes environments that have
content from source repositories applied

Projects Logical groupings of applications with
common configurations and permissions

Accounts Management of local accounts stored
within the Argo CD server

Appearance Configuration of the look and feel of the UI

In addition to being able to manage application and server
settings, information related to the current authenticated
user is available from the User Info page, which is helpful
for associating identity details to enable role-based access

control (RBAC) permissions that are used to manage access
to Argo CD resources.
Even with all the parameters and settings that can be
configured within the Argo CD UI, there are still a large
number of properties that either cannot be managed using
the UI or their values are read-only. When those situations
do arise, the solution can be typically facilitated by using
the Argo CD CLI. The next section introduces the
capabilities included with the Argo CD CLI along with
applying the appropriate settings to enable the
management of the kind Argo CD environment.

The Argo CD Command-Line Interface

(CLI)

The Argo CD CLI (argocd) is a utility to control and manage
the Argo CD server. Similar to the UI, the CLI leverages the
API to facilitate the interaction with Argo CD. When certain
options are not available from within the UI, such as adding
remote clusters, the default option is to use the CLI, as it
includes a more in-depth set of options and capabilities as
compared to the UI.
Installing the Argo CD CLI can be performed on most major
operating systems, as there are prebuilt binaries readily
available. Other installation options are also available
depending on the target operating system, and the CLI is
also available in a number of formats, including a container
image with the CLI included. Consult the Argo CD CLI
installation documentation for the list of supported
platforms and necessary steps to complete the installation.
Once the CLI has been successfully installed, execute the
argocd command to see a list of functions that can be

https://oreil.ly/y5ro5

managed using the tool. Since the majority of the options
enabled from within the CLI cannot be used unless a
connection to an Argo CD environment is established, you
will need to connect the CLI to the kind Argo CD instance
using the argocd login command as shown next:

argocd login --insecure --grpc-web argocd.upandrunning.local

The --grpc-web parameter enables the use of the gRPC-Web
protocol, which enables communication through the ingress
controller. Additional configuration steps are needed to
enable native gRPC connectivity, which will not be covered
in this book.
When prompted, enter the Argo CD admin username and
password to authenticate the CLI to the kind Argo CD
instance.
As soon as successful authentication is achieved, a
configuration file containing details related to the user, the
Kubernetes context, and other connectivity data is created
in a file located at $HOMEDIR/.config/argocd/config. $HOMEDIR
uses an environment variable named ARGOCD_CONFIG_DIR, HOME,
or XDG_CONFIG_HOME (XDG Base Directory Specification),
depending on which value is resolved first.
One of the first steps that is typically taken after logging in
via the CLI is to change the default admin password.
Changing the admin password is an important step, as it
increases the security posture of the Argo CD server.
Kubernetes Secrets are not encrypted but are base64
encoded, which enables entities with access to query
Secrets access to the default password.
Change the default admin password by executing the
following command:

argocd account update-password

Enter the current admin password and the value of the
desired password to reset the admin password.
Confirm the new password was applied properly by logging
out of the current session and logging in once again with
the updated password:

argocd logout <context>

The value of the <context> property refers to the argocd
context to target. The list of argocd contexts can be queried
by executing the argocd context command. After logging
out, log in again using the argocd login command to confirm
the password reset was successful.
Changing passwords for Argo CD users is just one action
that cannot be accomplished using the UI and is one of the
benefits provided by the CLI. The use of the CLI will
become even more prevalent in upcoming chapters as it
provides capabilities for not only administrators and users,
but also its inclusion and integration into other systems and
workflows.
However, what if there was no reason at all to use either
the UI or the CLI but still get the benefits of being able to
manage Argo CD? The final section of this chapter explores
two additional methods for interacting with Argo CD.

Additional Methods for Managing

Argo CD

The Argo CD UI and CLI simplify how users interact with
Argo CD—either through visualization and accessibility

features from the perspective of the UI or by enabling a
command-line-level approach with the CLI. One of the
commonalities between these two components is that they
both make use of the REST-based API that Argo CD
exposes. End users can invoke the same APIs that Argo CD
exposes without being limited based on the features that
are included in either the UI or CLI.
The first question that may come to mind is: What type of
information does Argo CD make available via the API? One
approach could be to use the developer console included by
the web browser to inspect the requests that are being
invoked from the web console. But that would be somewhat
tedious for being able to determine the exact endpoint and
parameters that need to be included.
Fortunately, Argo CD provides an OpenAPI specification
(sometimes called Swagger), which describes all of the
APIs, including the acceptable inputs and provided outputs
that are exposed, reducing the burden on the end user.
The OpenAPI specification provided by Argo CD is located
at the endpoint /swagger.json.

NOTE

OpenAPI is an open standard that is both machine and human readable for
describing and visualizing web services. Additional information can be found
at OpenAPI’s website.

Open a web browser and navigate to
https://argocd.upandrunning.local/swagger.json to view the
contents.
Upon loading the OpenAPI specification document, one
quickly realizes how verbose a specification can be. With a

https://www.openapis.org/

mature API, such as Argo CD, the document is quite large.
One of the tools provided by the Swagger project is a
visualization component for OpenAPI specifications that
avoids needing to become familiar with the intricate details
of the OpenAPI specification. This utility is included with
Argo CD and can be accessed by navigating to
https://argocd.upandrunning.local/swagger-ui.
Now that there is an understanding of the API services to
query, what are the steps necessary to invoke them? First,
a session token must be generated by invoking the
/api/v1/session endpoint with a valid username and
password.
Execute the following command to obtain a session token,
substituting the username and password in the appropriate
fields:

curl -H "Content-Type: application/json" \

 -XPOST -k https://argocd.upandrunning.local/api/v1/session \

 -d '{"username":"<USERNAME>","password":"<TOKEN>"}' | jq -r

NOTE

The -k argument disables TLS validation, which would have thrown an error
similar to what was seen previously when navigating to the Argo CD UI from
the web browser.

A successful authentication attempt will result in a similar
response to the following:

{"token":"<TOKEN>"}

With a valid session token, the available API endpoints can
be invoked.

One of the most important endpoints that is frequently
queried, especially during the initial configuration of Argo
CD, is the settings endpoint. This endpoint is exposed at
/api/v1/settings and can also be verified within the
Swagger UI interface by selecting SettingsService and
viewing the GET request listed in Figure 3-2.
By expanding the responses, it is a wealth of information,
much more than is provided by the CLI or the UI (see
Figure 3-2).

Figure 3-2. The properties of the SettingsService as shown in the Swagger UI

interface

To invoke this endpoint, execute the following command,
substituting the value of the bearer (session) token
obtained previously:

curl -k -H "Authorization: Bearer <TOKEN>" \

 https://argocd.upandrunning.local/api/v1/settings | jq -r

A response similar to the following should be displayed:

{

 "appLabelKey": "argocd.argoproj.io/instance",

 "resourceOverrides": {

 "apiextensions.k8s.io/CustomResourceDefinition": {

 "ignoreDifferences": "jqPathExpressions: null\njsonPointers:\n-

/status\n- ...

 }

 },

 "googleAnalytics": {

 "anonymizeUsers": true

 },

 "kustomizeOptions": {

 "BuildOptions": "",

 "BinaryPath": ""

 },

 "help": {

 "chatText": "Chat now!"

 },

 "passwordPattern": "^.{8,32}$",

 "controllerNamespace": "argocd"

}

Viewing server settings is just one of the many API
endpoints that can be not only queried but also updated
and adds an additional weapon to the already robust
arsenal of tools that are used to manage Argo CD.
However, what if there was a desire to not leverage any of
these tools or any services provided by Argo CD
whatsoever but still retain the benefits and assurances of a
well-maintained environment?
Recall back in Chapter 2 that Argo CD supports a
declarative model for managing GitOps and that Argo CD
implements the controller pattern to track the state of
resources based on defined manifests. While Argo CD
responds to changes to custom resources, such as
applications and AppProjects, it also tracks additional
resources, such as ConfigMaps and Secrets which are used

to influence the configuration of the entire platform. So
instead of using the UI, CLI, or invoking the API, the
configurations can be applied directly to the Kubernetes
cluster.
Each deployable in the Argo CD architecture makes use of
configuration properties stored within ConfigMaps and
Secrets in the same namespace that Argo CD is deployed
within. Some of these resources use a well-known and
established name, like a ConfigMap with the name argocd-
cm, which contains the primary configuration properties for
Argo CD, while others use metadata within each resource
to signify their importance and intended capabilities.
Indeed, the server settings API endpoint that was invoked
previously queried the contents of this ConfigMap.
There are a number of Argo CD configurations that can be
defined within ConfigMaps, and they are detailed in
Table 3-2.

Table 3-2. Common Argo CD configurations

Resource

name(s) Kind Description

argocd-cm ConfigMap General Argo CD
configuration

argocd-cmd-params ConfigMap Argo CD environment
variable configurations

argocd-rbac-cm ConfigMap RBAC configuration

argocd-ssh-known-hos

ts-cm

ConfigMap SSH known-host
configuration data

Additional resources that influence the configuration of
Argo CD are stored within Secrets and do not make use of a
standardized naming convention for the resource. Instead,
a label with the key argocd.argoproj.io/secret-type is placed
on the Secret to denote their significance.
For example, a secret with the label
argocd.argoproj.io/secret-type: repository contains
connection details to a remote content source repository.
As Argo CD can manage content from multiple remote
repositories at a time by using the label approach, similar
content with distinct values for each repository can be
applied within separate Secret resources and then
correlated appropriately based on the content.
Table 3-3 provides an overview of the different Secret types
and their significance.

Table 3-3. Argo Secret types

Label Description

argocd.argoproj.io/secret

-type: cluster

The definition, configuration, and
credentials associated with a remote
cluster

argocd.argoproj.io/secret

-type: repository

Consolidated configurations and
credentials associated with a remote
repository

argocd.argoproj.io/secret

-type: repo-config

Configurations associated to a
remote repository (not widely used)

argocd.argoproj.io/secret

-type: repo-creds

Credentials for communicating with
a remote repository

As topics are introduced throughout the course of this
book, the way in which these resources can be used will
come into focus to enable an entirely hands-off approach
for managing Argo CD server configuration.

Summary

This chapter introduced several methods to aid in the
management of Argo CD: a visual UI, an interactive
command-line utility, a comprehensive API, and an entirely
declarative model. These options empower a freedom of
choice for Argo CD administrators and end users toward
using a tool or approach they feel the most comfortable
using. Chapter 4 focuses on one of, if not the most,
foundational topics in the realm of Argo CD and how it is
the center point for facilitating GitOps practices.

Chapter 4. Managing

Applications

Argo CD manages the lifecycle of Kubernetes resources
using a construct called Applications. An Argo CD
Application is a custom resource that contains a logical
collection of related Kubernetes resources (i.e., a collection
of YAML or JSON files). An Argo CD Application is the
smallest unit of work in Argo CD and is where Argo CD
interfaces with Kubernetes in order to deploy Kubernetes
objects.

NOTE

Application templating is possible with ApplicationSets, which will be
discussed in Chapter 10.

In this chapter, we will cover the basics of an Argo CD
Application, the different components (including an
overview of the types of sources Applications can connect
to), and how to use different Kubernetes templating tools
that Argo CD natively supports. To wrap up this chapter,
we’ll cover the lifecycle of an Argo CD Application.

Application Overview

As previously mentioned, an Argo CD Application is the
atomic working unit in Argo CD. It defines the end state of
the desired set of resources within a Kubernetes cluster,
more specifically, it defines which objects need to be

applied to the running Kubernetes cluster. Let’s take a look
at an example of an Argo CD Application:

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: guestbook

 namespace: argocd

spec:

 project: default

 source:

 repoURL: https://github.com/argoproj-labs/argocd-example-apps/

 targetRevision: main

 path: guestbook/

 destination:

 server: https://kubernetes.default.svc

 namespace: example

This is a minimal example of what is needed for an Argo CD
Application to be functional within a cluster. Things like
adding Kustomize post-rendering and sync options are also
possible using the Application CRD. For the time being, the
two main pieces of information that you should focus on are
the .spec.source and .spec.destination sections:

.spec.source

This defines the location containing resources that Argo CD
should interface with. This property includes key options,
such as repoURL, which defines where the Git repository or a
Helm chart repository that holds the manifests are located.
The targetRevision is where you can define what branch or
tag should be targeted, or in the case of a Helm chart, the
version of the Helm chart you want deployed. And finally,
the path is where you can find the Kubernetes manifests
relative to the repoURL.

.spec.destination

This specifies the target Kubernetes cluster to apply the
manifests defined under the .spec.source section. Here
you’ll specify the Kubernetes API endpoint in the server
section (here, https://kubernetes.default.svc is used as a
way to indicate to Argo CD to deploy to the cluster Argo CD is
running on), and the namespace section indicates which
namespace to target on that cluster. Omitting the namespace
section will cause Argo CD to default to the default
namespace during deployment.

NOTE

The namespace in the Application YAML should match the namespace of where
your Argo CD instance is installed—this is typically the default argocd
namespace, and we show this in our example. Starting in Argo CD version
2.5, support was added to enable sourcing Applications from namespaces
other than where Argo CD is deployed. Although this is a very useful feature,
it will not be used in the examples found within this publication.

The Argo CD Project Git repository provides a
comprehensive view of all of the options available to you.
Other sections of note that we will cover in detail in
subsequent chapters are the options for when Applications
are synchronized against cluster(s) within the syncPolicy
property as well as how differences between the expected
rendered state of resources and the actual state within a
cluster are handled. Understanding and managing
resources beyond their initial creation is related to a

https://oreil.ly/lfoSM

concept called drift management and is one of the key
benefits provided by Argo CD.

Application Sources

Argo CD takes the desired state defined in the Application
Custom Resource Definition (CRD) and attempts to modify
the current running state on the Kubernetes cluster based
on the defined content. Argo CD was built from the ground
up with GitOps in mind, and it therefore supports two
sources as the source of truth: Git and Helm.

NOTE

Drift detection happens out of the box with Argo CD, but self-heal needs to
be enabled. The examples in this book enable self-healing, but it’s important
to note that it’s not the default.

The source field in an Argo CD Application has a 1:1
relationship with the application specification. In other
words, only one source can be configured per application.

Starting with Argo CD v2.6, you can have a sources field
now and specify more than one source. An example of a
multisource application is as follows:

spec:

 sources:

 - repoURL: https://github.com/christianh814/gitops-examples

 path: applicationsets/rollingsync/apps/pricelist-config

 targetRevision: main

 - chart: mysql

 repoURL: https://charts.bitnami.com/bitnami

 targetRevision: 9.2.0

 helm:

 releaseName: pricelist-db

 parameters:

 - name: serviceAccount.name

 value: "pricelist-db"

 - name: auth.database

 value: "pricelist"

 - name: auth.username

 value: "pricelist"

 - name: auth.password

 value: "pricelist"

 - name: secondary.replicaCount

 - repoURL: https://github.com/christianh814/gitops-examples

 path: applicationsets/rollingsync/apps/pricelist-frontend

 targetRevision: main

NOTE

Using the sources field will cause Argo CD to ignore the source field.

A multisource Application takes, as the name suggests,
multiple sources of truth for an Application. Typically this is
used when you are deploying a Helm chart, but store the
values file in a separate Git repository. Although a great
feature, we will not be deploying any examples using this
method.

Git

Using Git as a source is a natural starting point for Argo
CD users, as it’s the focal point of where GitOps gets its
name. Git is not only the de facto source code management
(SCM) system for developers, but is also the place where
site reliability engineers (SREs) and platform engineers
store their infrastructure as code (IaC) configurations.
Many users making the switch to Argo CD and/or GitOps
find that they are storing a lot of things on Git already.
Storing resources in Git, as an Argo CD Application source,
can be as simple as having raw YAML stored containing

Kubernetes resources within a directory. However, it
doesn’t have to be raw YAML. The declarations can also be
stored and managed via templating tools, such as
Kustomize (covered later in this chapter) or Helm (covered
next).

Helm

Helm has become the de facto package manager for
Kubernetes applications and deployments. At its core, Helm
includes a templating engine for use with Kubernetes
manifests so that they are reusable, reproducible, and
stable. Many organizations have adopted Helm, and it’s a
natural choice for developers and system administrators
alike because of its ease of use and flexibility.
Since many organizations have widely adopted Helm, it was
a natural fit for Argo CD. Argo CD can use Helm by directly
consuming the Helm chart stored in a standard Helm
repository, OCI registry, or embedded within a Git
repository.

Destinations

In Argo CD, the destination refers to a Kubernetes cluster.
This destination cluster can either be the cluster that is
running Argo CD or another remote cluster (which can be
thought of as “hub and spoke,” where there is a central
control plane managing remote systems).

The destination cluster is noted under .spec.destination in
the Argo CD Application manifest. Here is a snippet of the
configuration:

spec:

 destination:

 server: https://kubernetes.default.svc

 namespace: bgd

In this example, the server field is set to
https://kubernetes.default.svc, which refers to the cluster
that Argo CD is running on. You can also specify name
instead of server, which is a reference to the name field in
the cluster secret. This will be discussed in depth in
Chapter 7. The namespace field indicates which namespace to
target.

NOTE

The namespace field does not overwrite the .metadata.namespace field if they are
declared within your manifests.

Clusters can be added either declaratively or via the argocd
CLI, resulting in a new Secret to be added to the
namespace Argo CD is deployed within.
For example, you can see any clusters that Argo CD is
managing by listing Secrets using the kubectl command:

$ kubectl get secrets -n argocd -l argocd.argoproj.io/secret-type=cluster

NAME TYPE DATA AGE

cluster-192.168.1.254-1289728133 Opaque 3 31s

More information about adding and managing clusters
within Argo CD will be covered in depth in Chapter 7.

Tools

One of the main tenets of GitOps is that
declarations/configurations must exist in an immutate

format (the second OpenGitOps principle). In a Kubernetes
environment, this means that YAML is stored inside a Git
repository. After a while, those who are just starting out in
their GitOps journey ask themselves: How do I declaratively
describe my resources in Git without copying and pasting
the same YAML all over the place?
It might seem like you’ll have to duplicate a lot of the same
YAML after you take things like environments, clusters,
regulatory restrictions, and anything else in your
organization that might force you to create a lot of YAML
with only slight variations between files into consideration.
After a while this simple YAML that should be applicable
“anywhere”...all of a sudden doesn’t fit anywhere. Luckily,
there are tools that can help you mitigate the issue of
having to copy and paste the same YAML all over the place
while making only small modifications.

Helm

As mentioned previously, Helm has become the de facto
package manager and delivery mechanism for applications
and controllers alike in a Kubernetes-based environment. If
you’ve ever worked on a Kubernetes cluster, you have most
likely used Helm at some point to deploy software from an
independent software vendor (ISV), stacks, or even deliver
your own application by leveraging its automation benefits.
Helm provides not only a method of packaging an
application and parameterizing YAML manifests, but also a
templating engine that can be used to deploy your
application to different environments.
Helm consists of different parts, as shown in Figure 4-1.
Charts are templatized versions of your application’s YAML
manifests that are parameterized so that you can inject
values into the defined templates. Helm combines the

templatized manifests with parameters, called values, to
produce the resources to apply to the Kubernetes cluster.
The specific installation of a chart within a cluster is known
as a release. The end state representation of the produced
release manifests is stored as a Secret within the installed
namespace on the Kubernetes cluster.

Figure 4-1. Helm architecture

NOTE

Secrets are the default backend storage (i.e., stores installation information)
for Helm 3. Consult the Helm documentation for more information.

Helm has a large ecosystem and many repositories that end
users can draw on to deploy prebuilt applications. If your
organization uses Helm heavily, you’re in luck! Most GitOps
tools support deploying Helm charts.

Kustomize

Kustomize is a framework built within the Kubernetes
community that lets you patch Kubernetes manifests

without needing to modify the original Kubernetes
manifests. While patching can be done via JSON patches,
the manifest that it modifies needs to be in YAML.
Kustomize is hierarchically organized using a directory
structure based on a concept of bases and overlays. While
each of these directories have their own purpose within
Kustomize, they must contain a kustomization file
(kustomization.yaml), which defines how to process the
contents within the current directory along with importing
content from other relative or remote sources.

The following is a simple example of a kustomization.yaml:

apiVersion: kustomize.config.k8s.io/v1beta1

kind: Kustomization

namePrefix: kustomize-

resources:

- guestbook-ui-deployment.yaml

- guestbook-ui-svc.yaml

When using Kustomize against the prior example, two
Kubernetes resources will be produced with their names
prefixed with kustomize-, as defined in the namePrefix
property.
Kustomize is a powerful tool, and since it is built within the
Kubernetes community, support is available within the
kubectl CLI. Adding the -k flag when using kubectl create
and kubectl apply commands will activate Kustomize
processing. However, by using the kubectl kustomize
subcommand instead, the full feature set of the kustomize
CLI can be achieved.
Kustomize truly is a powerful tool because it eliminates the
duplication of YAML and enables the ability to reuse by

providing a method of patching the YAML to fit the need of
the deployment. This means that you can store differences
(for example, between environments) as deltas instead of
copying the YAML for each use. The Kustomize structure
provides flexibility by creating overlays that can leverage
other bases and other overlays, creating a cascading
sequence of files. Those overlays can refer to remote
repositories as well. Kustomize can even process Helm
charts, which can be achieved within Argo CD.

Beyond Helm and Kustomize

While Helm and Kustomize are the two primary tools that
are used in Argo CD to render resources within a
Kubernetes cluster (aside from raw YAML), other tools are
also supported. Argo CD natively supports the JSON
templating language Jsonnet and will process any file
containing the *.jsonnet extension. Nonnative tooling can
also be included through the use of a config management
plugin (like Cue, for example), eliminating restrictions to
customizing how Kubernetes resources are produced. More
information on config management plugins and their use
can be found in Chapter 11.

Deploying Your First Application

Now that you’re familiar with what an Argo CD Application
is and its basic functionality, it’s time to deploy your first
Argo CD Application! Yes, we did walk through deploying
an Application back in Chapter 2 when Argo CD was first
installed, but by now, you have a better understanding of
the purpose of an Application and how they can be used.
Throughout the rest of this book, you’ll be exploring many

ways of deploying an Application, but for this example,
we’ll be going with deploying from a Helm chart.
For this example, create the following Argo CD Application
YAML in a file called quarkus-app.yaml.

Here, we are going to define the name of the Application to
be quarkus-app and we will be deploying the Application to
the same cluster as Argo CD is running (denoted by in-
cluster in the .spec.destination.name field). We are targeting
the demo namespace on the destination cluster (i.e., which
namespace to deploy the manifests to):

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: quarkus-app

 namespace: argocd

spec:

 project: default

 destination:

 namespace: demo

 name: in-cluster

 source:

 helm:

 parameters:

 - name: build.enabled

 value: "false"

 - name: deploy.route.enabled

 value: "false"

 - name: image.name

 value: quay.io/ablock/gitops-helm-quarkus

 chart: quarkus

 repoURL: https://redhat-developer.github.io/redhat-helm-charts

 targetRevision: 0.0.3

 syncPolicy:

 automated:

 prune: true

 selfHeal: true

 syncOptions:

 - CreateNamespace=true

NOTE

The keyword in-cluster is a special keyword that means “target the cluster
that the instance of Argo CD is running in.”

We are deploying the quarkus chart version 0.0.3 from the
repo denoted in the repoURL field. We are also providing any
parameters in the .spec.source.helm.parameters field, which
represent Helm values being set against the chart. Also
take note: we are adding the CreateNamespace=true option in
the syncOptions field (in order to make sure the namespace
exists before deploying the manifests). This example
deployment of a Helm chart using an Argo CD Application is
analogous to the following command:

$ helm install quarkus-app --namespace demo --create-namespace --version 0.0.3

\

--set build.enabled=false \

--set deploy.route.enabled=false \

--set image.name=quay.io/ablock/gitops-helm-quarkus \

redhat-helm-charts/quarkus

NOTE

To make use of the sample helm install command, the Helm chart repository
containing the quarkus chart must be added to the local machine using the
helm repo add <repo URL> command. If the chart is installed using the Helm
CLI, be sure that it is uninstalled prior to defining the chart using Argo CD.
Otherwise, errors will be produced.

To create this Argo CD Application within the Kubernetes
cluster, you can apply it using the following kubectl
command:

kubectl apply -f quarkus-app.yaml

You should see the Application appear in the Argo CD UI,
as shown in Figure 4-2.

Figure 4-2. Sample Helm chart application

NOTE

See Chapters 2 and 3 for more information about connecting to the Argo CD
UI.

You should also be able to see the manifests deployed on
the cluster using the Kubernetes CLI client. For example:

$ kubectl get deploy,service,pods -n demo

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/quarkus-app 1/1 1 1 9m24s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

service/quarkus-app ClusterIP 10.106.53.207 <none>

8080/TCP 9m24s

NAME READY STATUS RESTARTS AGE

pod/quarkus-app-57cf4d4b5c-q5jb8 1/1 Running 0 9m24s

One very important thing to note is the behavior in
comparison to using the Helm CLI directly. Running helm ls
-n demo against the namespace that contains an Argo CD–
managed Helm chart will not return any results:

$ helm ls -n demo

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

Why? Argo CD takes the philosophical approach of only
working with “RAW Kubernetes manifests” directly. This
means that Argo CD wants to “own” the manifests and not
have to rely on trying to interface with another tool. Argo
CD achieves this by doing the equivalent of running: helm
template <options> | kubectl apply -f -.

NOTE

You may see other Helm releases running, but you won’t see anything
deployed via Argo CD.

A release is only created whenever the install or upgrade
subcommands of the Helm CLI is used, which explains why
a release is not present for Helm charts maintained by Argo
CD.

Deleting Applications

Regardless of the tool being used to produce Kubernetes
resources or the destination where these resources will be
created, there may be a need to remove the Application so
that the generated resources are no longer managed by

Argo CD. Deleting an Application, similar to creating an
Application, can be facilitated by using the kubectl
command.
Execute the following command to delete the Application:

kubectl delete application quarkus-app -n argocd

Once the Application has been deleted, the tile
representing the Application will no longer be present in
the Argo CD interface. You should see something like in
Figure 4-3.

Figure 4-3. Application deleted

It is important to note, and you may have discovered this
already, that even though the Application was deleted, the
resources that were managed by the Application still
remain within the argocd namespace.
“Why is that the case?” you may wonder.
Argo CD makes the assumption that even though there is
no longer a desire to manage these sets of resources, there
will still be a need for them to remain within the cluster
after the Application is deleted. This is mainly due to the

motivation of avoiding data loss of the resources and so
that anything dependent on them remains available. This
approach is similar to how PersistentVolumes are managed
within StatefulSets upon the removal of the StatefulSet
itself or one of the replicas.
To remove the resources that are managed by an
Application, the resources-finalizer.argocd.argoproj.io
finalizer can be set on the Application:

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: quarkus-app

 namespace: argocd

 finalizers:

 - resources-finalizer.argocd.argoproj.io

If an Application has this finalizer present (either by an
administrator or ApplicationSet), upon deletion, the Argo
CD controller will perform a cascading deletion of all of the
resources that it is managing.

Finalizers

Finalizers are a feature of Kubernetes associated with
garbage collection that controls when a resource is deleted.
When a resource is deleted, the .metadata.deletion​Ti⁠mestamp
field is populated, which triggers controllers to clean up
any resource that is owned by the resource being deleted.
Once the cleanup process completes, the associated
controller will remove the finalizer from the resource. Only
when all finalizers have been removed will the resource
itself be deleted.
When deleting dependent resources, Argo CD makes use of
the foreground cascade deletion policy, which will delete

the dependent resources first and then delete the
Application afterward. If there is a desire to use the
background cascade deletion policy, which will delete the
Application immediately while the controller deletes the
associated resources, the resources-
finalizer.argocd.argoproj.io/background finalizer can be set
on the Application:

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: quarkus-app

 namespace: argocd

 finalizers:

 - resources-finalizer.argocd.argoproj.io

 - resources-finalizer.argocd.argoproj.io/background

Summary

This chapter focused on managing Kubernetes resources
through Argo CD Applications, which are Custom Resource
Definitions (CRDs) representing a logical collection of
related resources. These Applications are the smallest unit
of work in Argo CD, defining the desired state of resources
within a Kubernetes cluster. This chapter covers the
essential components of an Argo CD Application, including
the source and destination specifications, and introduces
the templating tools supported by Argo CD, such as Helm
and Kustomize.
An Argo CD Application specifies the source of resource
manifests, typically located in a Git repository or Helm
chart repository. With the introduction of multisource
applications in Argo CD version 2.6, users can now specify
multiple sources for a single application. Templating tools
like Helm and Kustomize help manage and deploy

Kubernetes manifests efficiently, avoiding redundancy and
facilitating modifications.
This chapter also provided a guide for deploying
applications using Argo CD, focusing on Helm chart
deployments. It explains the synchronization policies and
the importance of finalizers in managing application
deletions. Finalizers ensure that dependent resources are
cleaned up properly, preventing data loss and maintaining
resource availability. This chapter emphasizes Argo CD’s
approach to managing raw Kubernetes manifests, ensuring
consistency and control over the deployment process.

Chapter 5. Synchronizing

Applications

Argo CD’s synchronization process makes it easy to be able
to take Kubernetes resources stored within Git or Helm
repositories and apply them to a target cluster. Given that
this capability is one of the core features of Argo CD, there
are a variety of options available for determining when the
synchronization process will be triggered and how the
Kubernetes resources will be applied. This level of control
is important, as there may be a need to guard exactly how
and when content is applied (for example, if certain
resources need to be applied in a specific order). In this
chapter, we will explore the options available when
synchronizing Argo CD Applications, their impact against
the lifecycle of the application itself, the Argo CD server,
and ultimately the target Kubernetes cluster.

Managing How Applications Are

Synchronized

Given that the synchronization of content from source to
target Kubernetes cluster is a fundamental concept in Argo
CD, it is important to first understand the defaults that
Argo CD applies and the various levels of customizations
that are available. If you recall in Chapter 4, we briefly
introduced synchronization and covered how the
configurations can be defined within the .spec.syncPolicy
property of an Application.

By default, when Applications are created, none of the
rendered resources are applied to the Kubernetes cluster.
This may surprise many new Argo CD users given that Argo
CD is a tool that manages assets that are destined for
Kubernetes. However, there are a number of reasons why
this is Argo CD’s default behavior:

As the configurations for an Application are refined,
there may be a need or desire to “preview” the
changes that would be applied without performing
any change.

It may be important to control when and how
resources are applied.

Organizational policies may prohibit automating
changes to infrastructure.

The Argo CD UI and application resource provide a glimpse
of the resources that would be affected, but any
synchronization against the cluster needs to be performed
in a manual fashion. Synchronization of manifests can be
achieved through the UI by selecting the Sync button on
the application or from the Argo CD CLI using the argocd
app sync command.

NOTE

Syncs can also be initiated by running the kubectl patch command. More
information can be found in the Argo CD documentation.

Since most users would want to take advantage of an
automated synchronization of an application, let’s illustrate
the ways that this can be achieved:

https://oreil.ly/qXR9u

Specify the sync policy for the application using the
argocd CLI:

$ argocd app set <APPNAME> --sync-policy automated

Select the Enable Auto-Sync button within the Argo
CD UI.

Define the configuration explicitly within the
Application resource:

spec:

 syncPolicy:

 automated: {}

Regardless of the option chosen (either manual or
automated), as soon as the source content differs from the
live state of the cluster, the application will be
synchronized.

Sync Options

Aside from the fundamental determination of whether an
application should be synchronized automatically or
manually, Argo CD can be configured to perform a
customized operation of how it synchronizes the desired
state to the target cluster through the
.spec.syncPolicy.syncOptions property. These customizations
can, for the most part, be configured on the application
resource itself. However, others can be defined as
annotations within each individual resource that is
associated with an application. This is especially useful
when you want a specific action to occur against a set of

resources, but not in all of the manifests associated within
an Argo CD Application.
Let’s first take a look at how Sync Options can be used
within an Argo CD Application.

Application-Level Options

As mentioned previously, synchronization options are
specified under the .spec​.syn⁠cPolicy.syncOptions in the
application manifest. These options will affect all resources
that are associated with the Argo CD Application. The
following example Application manifest goes through the
sync options available:

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: sample-app

 namespace: argocd

spec:

 syncPolicy:

 syncOptions:

 - Validate=true

 - ApplyOutOfSyncOnly=true

 - CreateNamespace=true

 - PrunePropagationPolicy=foreground

 - PruneLast=true

 - Replace=false

 - ServerSideApply=true

 - FailOnSharedResource=true

 - RespectIgnoreDifferences=true

Let’s dive a little deeper into the syncOptions configurations:

Validate=false

By default, Argo CD uses Kubernetes API validation and will
fail the sync operation if the manifest is not valid (equivalent

to running: kubectl apply --validate=false). The default
value is: true.

ApplyOutOfSyncOnly=true

By default, Argo CD applies every object in an Argo CD
Application. This could pose a problem if you have
thousands and thousands of objects. This option only
synchronizes/applies to objects that are out of sync.

CreateNamespace=true

This option creates the namespace (in the
spec.destination.namespace section of the Argo CD
Application), if it does not already exist, before Argo CD
attempts to apply the objects in an application.

PrunePropagationPolicy=foreground

This option shapes how the application handles
pruning/deleting of resources (known as garbage collection).
The default is foreground, and other options available are
background and orphan.

PruneLast=true

This option allows the ability for resource pruning to
happen as a final part of a sync operation, after the other
resources have been deployed and become healthy, and
after all other waves are completed successfully.

Replace=false

By default, Argo CD does the equivalent of kubectl apply.
This sometimes poses an issue when the object is too big to
fit into kubectl.kubernetes.io/last-applied-configuration
annotation. Note, this option could be dangerous if set to
true, as a Replace operation effectively does a Delete and the
Recreate operation. Deleting things like storage claims or
CRDs can cause production outages.

ServerSideApply=true

This option enables Argo CD to use server-side apply when
running a sync operation. This is equivalent to running
kubectl apply --server-side. Most of the time, since this
option is used to apply deltas of changes, the Validate=false
option is frequently used in conjunction with this option.

FailOnSharedResource=true

With this option, Argo CD will mark the application as failed
whenever it finds a resource associated with the application
that has already been applied in the cluster via another
application.

RespectIgnoreDifferences=true

By default, Argo CD uses the ignoreDifferences config, found
in .spec.ignor⁠e​Differences, only for calculating the
difference between the live and desired state (but still
applies the object as it is defined in Git). This option also
takes it into consideration during the sync operation.

Resource-Level Options

Along with the sync options on the Argo CD Application
level, users can also apply these configurations/options at
the object/individual resource level. This means that you
don’t have to apply any of the sync options against all
resources contained within the entire Argo CD Application,
but to only specific objects. A subset of the application sync
options are available to individual objects, as well as
several other additional options.
These resource-level options can be set by annotating the
resource you want the option to apply to. You can do this by
defining the argocd.argoproj.io/sync-options annotation
under metadata.annotations on the resource you would like
to apply the option to. For example, to skip Kubernetes
validation on a specific object:

metadata:

 annotations:

 argocd.argoproj.io/sync-options: Validate=false

By implementing this approach, only the object with this
annotation will skip Kubernetes validation while the rest of
the objects within the Argo CD Application will be
validated. The options available via the
argocd.argoproj.io/sync-options annotation are:

Validate

PruneLast

Replace

ServerSideApply

In addition, the following options are available for
individual resources using the argocd.argoproj.io/sync-
options annotation:

Prune=false

This prevents the annotated object from being pruned.

SkipDryRunOnMissingResource=true

Argo CD, by default, performs a “dry run” of applying the
manifests (equivalent to using the --dry-run option with
kubectl); this option skips the dry run step. This is especially
useful if you are deploying CRDs or Operators, as the
associated resource may not be available as a registered
resource at the specific validation time. This option is
commonly paired with the retry strategy, which will perform
subsequent attempts to synchronize the Application where a
failure no longer occurs, as the desired resource has become
available.

Users can specify multiple options in the annotation by
separating the options with a comma (,) between each of
the desired options. For example, to disable validation and
use server-side apply within a resource, you can set the
following in your object:

metadata:

 annotations:

 argocd.argoproj.io/sync-options: Validate=false,ServerSideApply=true

Using this configuration, the object with this annotation
will disable validation and use server-side apply.

Sync Order and Hooks

Argo CD has the ability to customize the order in which the
manifests are applied. Furthermore, Argo CD incorporates
different sync phases so that users can further fine-tune
how objects are applied to the target cluster.

Hooks

Argo CD has the ability to set up different sync phases by
allowing the user to utilize hooks. These injection points
within the application lifecycle enable additional
automation, such as running scripts before, during, and/or
after a sync has completed to supplement applying the
standard set of resources. You can also use hooks in the
event a sync has failed for whatever reason. While hooks
can be implemented as any Kubernetes object, they are
usually as Pods or Jobs.
There are four hooks that can be used in your Argo CD sync
process:

PreSync

This phase occurs prior to the Sync phase. This is typically
used for actions that need to occur before the Application is
synced. A common use case is running a script that performs
a schema update against a database.

Sync

This is the standard (default) phase for Argo CD and is
executed once the PreSync phase has finished. This is
typically used to aid the Argo CD Application deployment

process in the event more complex activities within the
Application need to occur.

PostSync

This phase occurs after the Sync phase has been completed.
This can be used to send a notification that the phase has
been completed or to trigger a CI progress or continue a
CI/CD workflow.

SyncFail

This is a special hook that is run only if a sync operation has
failed. This is normally used for alerting or performing
cleanup activities.

PostDelete

This is typically used for any cleanup tasks after all other
resources have been deleted.

When setting up an Argo CD Application, the resources that
are in your source of truth are applied to the destination
cluster during the Sync phase. The other phases are used to
perform pre- or posttasks before and/or after the objects
are applied in the Sync phase.
It is important to note that each phase is dependent on the
success of the previous phase (with the exception of the
SyncFail phase). For example, if an error occurs in the
PreSync phase, the Sync phase will not run.
In order to indicate which resource in your Git repository
belongs to which phase, you will have to annotate the

desired resource with argocd.argoproj.io/hook with the value
of the phase that it should execute within (the absence of
the hook annotation results in the resource being applied
during the Sync phase). For example, for a Job to be
executed in the PostSync phase, the following annotation is
applied:

metadata:

 annotations:

 argocd.argoproj.io/hook: PostSync

Resources that make use of hooks can be deleted when a
sync operation is performed by using the
argocd.argoproj.io/hook-delete-policy annotation. The
following hook deletion policies are available:

HookSucceeded

The hook resource/object is deleted once it has successfully
completed.

HookFailed

The hook resource/object is deleted if the hook has failed.

BeforeHookCreation

Any hook resource/object will be deleted before the new one
is created. This is the default if no hook deletion policy is
specified.

Here is an example of a PostSync hook with a deletion policy
of HookSucceeded:

metadata:

 annotations:

 argocd.argoproj.io/hook: PostSync

 argocd.argoproj.io/hook-delete-policy: HookSucceeded

It is important to note that hooks that are named (i.e., ones
with .metadata.name defined) will be created/run only once.
If you want a hook to be re-created or re-run each time
there is a sync operation, either use the BeforeHookCreation
deletion policy or use .metadata.generateName in your
resource/object.

NOTE

Note: As of the time of this writing, certain tools, such as Kustomize, have
limited support for the use of the generateName property.

Sync Waves

Argo CD applies manifests in a specific order. You can see
this order by inspecting the code. In most cases, the default
order that Argo CD applies resources should work.
However, complex deployments may inevitably require
changes to this default order. This is where sync waves
come in.

NOTE

Sync waves work best if proper Application health checks are in place. This
will be reviewed in depth in Chapter 10.

The concept of sync waves is pretty straightforward. The
desired resource is annotated with the order in which you
wish Argo CD to apply your manifests using

https://oreil.ly/QbCwy

argocd.argoproj.io/sync-wave key with an integer value
denoted as a string:

metadata:

 annotations:

 argocd.argoproj.io/sync-wave: "5"

By default, every resource gets assigned “wave 0,” unless
otherwise specified via the annotation. Numbers can be
negative as well. So, for example, consider the following:

Namespace as wave “–1”

Service Account as wave “0”

Deployment as wave “1”

The Namespace would be applied first, then the Service
Account, and then finally the Deployment.
A good use case for sync waves is to apply CRDs first
before the corresponding custom resource.
Sync waves can also be used within the confines of a hook.
This means that you can have resources within a PreSync
hook phase be applied in a specific order, within that
phase, without affecting other hook phases. In the following
example, the Job will be applied in wave “3” within the
PreSync hook phase:

apiVersion: batch/v1

kind: Job

metadata:

 name: create-tables

 annotations:

 argocd.argoproj.io/sync-wave: "3"

 argocd.argoproj.io/hook: PreSync

Now, you can also have the following resource in a PostSync
hook:

apiVersion: batch/v1

kind: Job

metadata:

 name: test-deployment

metadata:

 annotations:

 argocd.argoproj.io/sync-wave: "1"

 argocd.argoproj.io/hook: PostSync

In these two examples, the create-tables will be applied
before the test-deployment even though test-deployment is a
lower wave. This is due to the fact that the create-tables
resource is in a different hook phase. The important thing
to note when considering sync waves with hooks is that
sync waves are scoped within each hook phase. This
provides administrators with flexibility in how manifests
get applied to the destination.

Comparing Options

There might be cases where you will need to exclude
resources from the overall status of your application—for
example, if you have a resource created by another
controller (this is common when working with Kubernetes
Operators). This can be achieved with the following
annotation:

metadata:

 annotations:

 argocd.argoproj.io/compare-options: IgnoreExtraneous

NOTE

This only affects the sync status. If the resource’s health is degraded, then
the application will also be degraded.

For example, the following Secret instructs the OpenShift
OAuth operator to create another Secret for the OpenShift
OAuth controller to consume. By doing so, Argo CD will
mark your Argo CD Application “out of sync.” To work
around this issue, use the aforementioned
argocd.argoproj.io/compare-options: Ignor⁠e​Extraneous

annotation:

apiVersion: v1

kind: Secret

type: Opaque

metadata:

 name: htpass-secret

 namespace: openshift-config

 annotations:

 argocd.argoproj.io/compare-options: IgnoreExtraneous

data:

 htpasswd: bm90VGhlRHJvaWRzWW91cmVMb29raW5nRm9y

This will mark your Application as “healthy” in Argo CD,
but it’s important to note that it’ll mark the created
resource as “out of sync.” However, the overall Application
health is not affected.

Managing Resource Differences

Argo CD allows you to manage how you handle differences
from your source of truth and current state within
Kubernetes by the way of ignoring differences. There are
several locations where ignoring differences can be
configured. This configuration can be applied on a per–

Argo CD Application basis or for the whole Argo CD system
(where all the Applications in an Argo CD installation are
affected).

Application-Level Diffing

As the name suggests, application-level diffing allows you
to ignore differences within individual applications at a
specific JSON path, using RFC6902 JSON patches and jq
path expressions. Using the JSON path, you can specify
paths referencing properties that Argo CD should ignore
when it compares the running state with the desired state
defined. Here is an example:

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: myapp

spec:

 ignoreDifferences:

 - group: apps

 kind: Deployment

 jsonPointers:

 - /spec/replicas

The ignoreDifferences setting allows you to specify the name
of the resource and the namespace as well as the Group
Version Kind (GVK). For more complex manifests, you can
use the jq path expression to define specific items to ignore
in a more granular fashion. For example:

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: myapp

spec:

 ignoreDifferences:

 - group: apps

 kind: Deployment

 jqPathExpressions:

https://oreil.ly/ncPGa
https://oreil.ly/Y-31-

 - .spec.template.spec.initContainers[] | select(.name == "injected-init-

container")

NOTE

Visit https://jqlang.org for more on the jq expression language and how to
use the jq path expression option.

You can also ignore fields owned by specific managers by
using managedFields​Manag⁠ers and listing the specific
managers to ignore.
An additional item to note: most users will use the
RespectIgnoreDifferences sync option in conjunction with this
ignoreDifferences setting.

System-Level Diffing

Argo CD can also be set up to ignore differences at a
system level. This allows administrators to be able to set
global ignore settings for the specific Argo CD installation.
These configurations can be set up for a specified group
and kind by using the resource.customizations key of argocd-
cm ConfigMap using the following format:

data:

 resource.customizations.ignoreDifferences.apps_Deployment: |

 jsonPointers:

 - /spec/replicas

Take note that the resource.customizations key also includes
the keyword ignor⁠e​Differences with the GKV demarcated by
an underscore (_), using a flattened approach. For more
information about how to formulate these settings, please
see the official Argo CD documentation site on system-level

https://jqlang.org/
https://oreil.ly/xp47q

diffing. There you can see more specific examples of
modifying how Argo CD handles diffs as a global setting.

Use Case: Database Schema Setup

With an understanding of some of the ways to customize
the synchronization and the associating current state for
applications, let’s see it in action with one of the most
common use cases: a database schema setup.
We are going to be deploying an Application that is going to
consist of a backend database. The database will be set up
at deploy time, which means that the database schema will
need to be loaded as a part of the deployment.
Furthermore, the database schema setup needs to run after
the database is up and running. For this specific use case,
we are going to be making use of sync waves and Argo CD
Application Sync Options.

Argo CD Application Overview

All the artifacts we will be using are in the aforementioned
companion repository—make sure you’ve cloned this
repository if you have not done so already, and ensure that
you are in the root directory of this repository.
Inspect the Argo CD Application for this use case, which is
located in the ch05 directory.

Execute cat ch05/pricelist-app.yaml from the root directory
of the repository and you will see the following manifest:

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: pricelist-app

 namespace: argocd

https://oreil.ly/xp47q
https://github.com/sabre1041/argocd-up-and-running-book

 finalizers:

 - resources-finalizer.argocd.argoproj.io

spec:

 project: default

 source:

 path: ch05/manifests/

 repoURL: https://github.com/sabre1041/argocd-up-and-running-book

 targetRevision: main

 destination:

 namespace: pricelist

 name: in-cluster

 syncPolicy:

 automated:

 prune: true

 selfHeal: true

 syncOptions:

 - CreateNamespace=true

 retry:

 limit: 5

 backoff:

 duration: 5s

 factor: 2

 maxDuration: 3m

This manifest should look familiar if you have already
completed Chapter 4. There are several items of note to
point out:

The .spec.syncPolicy has the automated options of
prune: true and selfHeal: true. This means that Argo
CD will synchronize this application automatically
whenever it’s out of sync. In addition, it will also
delete resources that it is not keeping track of.

Under .spec.syncPolicy, the CreateNamespace=true
option under sync​Op⁠tions is also defined, which
specifies that Argo CD will create the destination
namespace if it doesn’t already exist.

Retries under that .spec.syncPolicy.retry property
have also been defined. This option specifies how

many times to retry the sync before Argo CD marks
the sync process as “Failed.”

One final item to note is that Argo CD will be deploying
manifests under the ch05/manifests/ directory from the
repository as denoted in the .spec.source.path section. This
last item is what we will cover in the next section.

Manifest Sync Wave Overview

If you take a look under the ch05/manifests/ directory, you
will see a kustomization.yaml file, which for the purposes of
this example, aggregates the manifests that need to be
applied. It’s a simple list; basically, it is the resources that
we want applied to the cluster:

apiVersion: kustomize.config.k8s.io/v1beta1

kind: Kustomization

namespace: pricelist

resources:

- pricelist-db-pvc.yaml

- pricelist-db-svc.yaml

- pricelist-db.yaml

- pricelist-deploy.yaml

- pricelist-job.yaml

- pricelist-svc.yaml

NOTE

For more information about Kustomize, please see Chapter 4.

Normally, Argo CD would apply these manifests in the
same order as the output of kustomize build in this
directory. However, we’ve added a sync wave annotation to
customize the order Argo CD should apply these manifests.

Prior to any other resource in this Application being
applied, we want the database and any backend storage to
be up and running first. Therefore, we’ve annotated the
pricelist-db-pvc.yaml (PersistentVolumeClaim for the
database) and pricelist-db.yaml (database deployment)
manifests with the argocd.argoproj.io/sync-wave: "1"
annotation to denote that we want these two manifests to
be applied first. They both should have the following
annotation:

metadata:

 annotations:

 argocd.argoproj.io/sync-wave: "1"

This will not only make Argo CD apply these manifests first,
but the annotation also causes Argo CD to wait until these
manifests are in a “ready” state before attempting to go on
the next manifest. Once all the manifests in wave 1 are
applied and reporting a ready state, the next wave is
applied.

In our use case, the next wave is the pricelist-db-svc.yaml
file, which has the argocd.argoproj.io/sync-wave: "2"
annotation:

apiVersion: v1

kind: Service

metadata:

 name: mysql

 annotations:

 argocd.argoproj.io/sync-wave: "2"

Since this is the only manifest with that sync wave
annotation, this pricelist-db-svc.yaml file will be applied
after wave 1.

You can inspect the other manifests in the ch05/manifests/

directory to inspect the order that they will be applied in:

pricelist-db-pvc.yaml and pricelist-db.yaml as sync
wave 1

pricelist-db-svc.yaml as sync wave 2

pricelist-deploy.yaml as sync wave 3

pricelist-svc.yaml as sync wave 4

pricelist-job.yaml in a PostSync hook in sync wave 0

Before moving on, it’s important to note that when you
inspect the pricelist-job.yaml manifest, this Job is
responsible for setting up the database schema. This Job
also runs as a PostSync hook, which means that it will be
applied after all the manifests in the sync phase have been
applied. Also note that the Job has a sync wave of 0.
Although a sync wave of 0 is the default, the annotation
was added to illustrate that sync waves work within phases.

NOTE

It’s good practice to make your hooks be idempotent, given that the hooks,
depending on the specific hook, will run multiple times.

Taking a look at the annotations in the pricelist-job.yaml
manifest:

apiVersion: batch/v1

kind: Job

metadata:

 name: pricelist-postdeploy

 annotations:

 argocd.argoproj.io/sync-wave: "0"

 argocd.argoproj.io/hook: PostSync

 argocd.argoproj.io/hook-delete-policy: BeforeHookCreation

Another important item to note is the use of a hook deletion
policy. This annotation ensures that this Job object should
be deleted before the hook phase starts in subsequent sync
runs if it is present. To learn more about hook deletion
policies, please consult the official Argo CD documentation
on resource hooks.

Importance of Probes

Argo CD uses several different sources to determine the
overall health of the Application being deployed. One of the
important metrics used is health status from the
Kubernetes API. In order for this capability to be utilized,
it’s very important to have readiness/liveness probes set up
correctly for each object that needs it. In Kubernetes,
liveness probes determine when to restart a container.
Readiness probes determine when a container is ready to
start accepting traffic.

NOTE

For more information about how Argo CD handles Application health, please
consult the official documentation. We will also go over this in Chapter 10.

In our particular use case, the resources that require
probes to be defined in order to achieve the desired goal
are the database deployment and the web app deployment.
Taking a look at the pricelist-db.yaml file, you’ll see the
following probes:

spec:

 template:

https://oreil.ly/YhDrF

 spec:

 containers:

 - image: mysql:8.0.41

 name: mysql

 livenessProbe:

 tcpSocket:

 port: 3306

 initialDelaySeconds: 12

 periodSeconds: 10

 readinessProbe:

 tcpSocket:

 port: 3306

 initialDelaySeconds: 12

 periodSeconds: 10

In this instance, TCP port 3306 is waiting to become active
before considering the database deployment alive and
ready to receive requests. For the web app, which is the
pricelist-deploy.yaml file, you will see the following probes
configured:

spec:

 template:

 spec:

 containers:

 - image: quay.io/redhatworkshops/pricelist:latest

 readinessProbe:

 httpGet:

 path: /

 port: 8080

 initialDelaySeconds: 5

 periodSeconds: 2

 livenessProbe:

 tcpSocket:

 port: 8080

 initialDelaySeconds: 5

 periodSeconds: 2

In the web app Deployment, we are considering the web
app alive when TCP port 8080 is active. The app will not be
considered ready until an HTTP GET request returns a
response code of 200 on port 8080.

In both cases (the database Deployment and web app
Deployment), both probes need to be successful before
Argo CD considers the Application “healthy” and “synced.”

NOTE

For more information on probes and how to set them up, please see the
official Kubernetes documentation on probes.

Seeing It in Action

Now that we’ve reviewed the use case in detail, let’s see it
in action by using these manifests in our kind instance.
From the root directory of the companion Git repository,
apply the Application manifest by running the following
command:

kubectl apply -f ch05/pricelist-app.yaml

An Argo CD Application tile should appear in the Argo CD
UI as a result. The tile will appear similar to what is
depicted in Figure 5-1.

https://oreil.ly/patGK

Figure 5-1. Pricelist Application tile

The first thing Argo CD does is apply the first sync wave,
which is our storage and database Deployment. After
clicking on the Application tile, you should be able to see
these resources enter the syncing phase first while the
other resources are in the “missing” state. Take a look at
Figure 5-2 for an example of how this is displayed.

Figure 5-2. Pricelist sync wave 1

When the storage is provisioned and the MySQL database
is deployed, the next object that Argo CD will apply in our
use case is the MySQL service. The Application overview
will appear similar to Figure 5-3.

Figure 5-3. Pricelist sync wave 2

After the service is healthy, Argo CD will apply the web app
Deployment, as seen in Figure 5-4.

Figure 5-4. Pricelist sync wave 3

Once the web app is deployed, the service for the web app
is applied, as denoted in Figure 5-5.

Figure 5-5. Pricelist sync wave 4

Once the web app service is deployed and in a healthy
state; the Sync phase is considered complete, and Argo CD
will enter the PostSync phase. The final step that Argo CD
performs is applying the Job that facilitates the database
schema setup. In the Argo CD UI, this is indicated by an
anchor (⚓) symbol within the Job, as seen in Figure 5-6.

Figure 5-6. Pricelist PostSync hook

Once the PostSync phase finishes, you should now see the
Argo CD Application tile for the Application show Healthy
and Synced status in the Application overview page. See
Figure 5-7 for how this appears.

Figure 5-7. Pricelist synced and healthy

Summary

In this chapter, we covered how Argo CD synchronizes
applications and how you can customize the method in
which Argo CD performs synchronizations on the individual
application level and the system as a whole. We also
reviewed how to further refine your synchronizations by
implementing ordering with sync waves and sync hooks.
Finally, we reviewed in detail a use case where sync waves
and sync hooks were used to perform a database schema
setup during an Argo CD deployment of an application.

Chapter 6. Authentication

and Authorization

Included as part of the standard platform deployment, Argo
CD contains a default management user providing
unrestricted access to configure the platform using either
the UI or via the API/CLI. By providing this functionality
out of the box, it simplifies the getting started experience
and enables end users to realize the capabilities provided
by Argo CD and the concepts embraced by GitOps
methodologies.
As adoption grows beyond a single individual managing and
utilizing Argo CD, there becomes a need to support
additional users aside from a single elevated management
user along with integrating with a centralized user
management system, such as LDAP or a compatible OIDC
provider. While at the same time, when providing the
capability to support additional users, there must also be a
way to define and govern the level of access that each
entity is entitled to.
In this chapter, we will explore how users are managed in
Argo CD, including where and how they are defined, the
ways that they can perform actions against the tool, and
the capabilities to define role-based access control (RBAC)
policies to govern their access.

Managing Users

While Argo CD supports the ability to define and leverage
multiple users, upon initial deployment, there is only a

single user available for use—“admin.” The admin user, as
discussed previously, is provided both as a convenience for
quickly getting up to speed with the capabilities provided
by Argo CD and for allowing unrestricted access to the
entire set of features included by the tool. It can be used as
the sole entity when Argo CD is utilized by a single
individual, complement the incorporation of additional
users once they are introduced, or be disabled entirely.
Let’s look into this admin user and how it can be leveraged
at various phases in Argo CD, at initial deployment time
and the use afterward.

The Admin User

When Argo CD is first deployed, a secret named argocd-
initial-admin-secret is created within the namespace for
which Argo CD has been deployed, containing the password
for the admin user. Assuming Argo CD has been deployed
to the argocd namespace, the password can be obtained by
using the following command:

kubectl -n argocd get secret argocd-initial-admin-secret \

-o jsonpath="{.data.password}" | base64 -d

This method for obtaining the admin password was
introduced in earlier chapters as we explored the various
ways to interact with Argo CD. Let’s now explore how we
can manage the admin user in further detail.

Using the argocd CLI, log in to Argo CD deployed to the kind
cluster deployed earlier using the previous command to
obtain the admin password:

argocd login --insecure --grpc-web --username admin \

--password=$(kubectl -n argocd get secret \

argocd-initial-admin-secret \

-o jsonpath="{.data.password}" | base64 -d) argocd.upandrunning.local

NOTE

It is important that the kind cluster that is used for this chapter has an
ingress controller deployed. Steps to enable the required kind cluster
environment can be found at the beginning of Chapter 3.

Details relating to the user can be found by using the argocd
account get-user-info. Use this command to obtain
information about the admin user:

argocd account get-user-info

Logged In: true

Username: admin

Issuer: argocd

Groups:

This output confirms that we successfully authenticated
and have an active session as the admin user.
The initial password for the admin user should only be used
for initial access and should be changed to prevent
unwanted use, given that anyone with the ability to read
secrets in the Argo CD namespace can gain access to the
password for a privileged user.

The argocd account update-password command can be used to
change the password for a user. Update the password for
the admin user, replacing <new_​pass⁠word_value> with the
desired password, by executing the following command:

argocd account update-password \

--account=admin \

--current-password \

$(kubectl -n argocd get secret argocd-initial-admin-secret \

-o jsonpath="{.data.password}" | base64 -d) --new-password=

<new_password_value>

By default, the argocd account update-password command will
update the account of the current user, and in this case,
could have been omitted. However, the --account flag was
included to explicitly select the user for which the
password would be updated as well as to demonstrate how
to target a different user, if desired.
With the account details updated, let’s confirm the updated
password works successfully by authenticating to the Argo
CD web interface. Launch a browser and enter admin in the
username field and the value of the updated password in
the password field. If the credentials were accepted, you
have successfully updated the admin password.
Now that the password for the admin user has been
changed, the secret containing the initial password can be
safely removed, if you choose to do so. Execute the
following to delete the initial admin secret:

kubectl delete secret argocd-initial-admin-secret -n argocd

Local Users

To give individuals the ability to access Argo CD without
needing to use the admin user, Argo CD includes the
functionality to manage users that are defined locally
within the tool. Local users serve two primary purposes:

They provide a facility to generate authentication
tokens for use by tools integrating to perform
management functions. Examples include CI/CD,
configuration management tooling, and monitoring
tools.

The creation of additional users to support small
teams or environments where integrating an
external user management tool is not needed or
desired.

Additional users are defined within the argocd-cm
ConfigMap using the format accounts.<username> as the key
along with one of the available capabilities that can be
granted to a user.
The following is an example of how a new local user named
alice can be defined within the argocd-cm ConfigMap:

apiVersion: v1

kind: ConfigMap

metadata:

 name: argocd-cm

 namespace: argocd

 labels:

 app.kubernetes.io/name: argocd-cm

 app.kubernetes.io/part-of: argocd

data:

 accounts.alice: apiKey, login

Adding the user alice to the argocd-cm can also be achieved
using kubectl by patching the argocd-cm ConfigMap using
the following command:

kubectl patch -n argocd cm argocd-cm --type='merge' \

-p='{"data": {"accounts.alice": "apiKey, login"}}'

Once the ConfigMap has been updated with the new user,
their details can be displayed by using the argocd account
list command:

NAME ENABLED CAPABILITIES

admin true login

alice true apiKey, login

At the present time, only two capabilities can be associated
with a local user: login and apiKey:

login

Provides the ability to access the web UI

apiKey

Allows for authentication tokens to be generated to interact
with the Argo CD API

For the majority use cases when creating local users, login
is the only capability that will be needed, as it is typically
associated with a human actor. However, for the purposes
of this exercise, we provided both available capabilities to
the user alice.
Similar to the admin user, the first step that should be
taken when creating new local users is to reset their
password since no password is initially defined and they
would be unable to log in. Use the argocd account update-
password to update the password of the user alice, as shown
next. Replace <new_password> with the desired password that
should be associated with the user alice:

argocd account update-password –-account=alice --new-password=<new_password>

You will then be prompted to enter the password of the
current user, and once entered, the password will be
changed.
Confirm that the new user Alice can authenticate
successfully by launching a web browser, navigating to the
Argo CD web console, and logging in with the username
alice and the password previously specified.

If the credentials are accepted, the new user has been
created successfully and is ready for use.
Alternatively, instead of using the Argo CD CLI to update
the password for a user, passwords can be defined in a
declarative fashion by setting the accounts.
<username>.password and accounts.<username>.passwordMtime
properties within the argocd-secret Secret. accounts.
<username>.password is a bcrypt hash containing the
password, while accounts.<username>.passwordMtime contains
the date that the password was last modified.

The Argo CD CLI includes the argocd account bcrypt helper
function for generating a bcrypt hash that can be used to
specify the desired password for a user.

Generate a password that will be used for the user alice to
authenticate using the following command:

argocd account bcrypt --password <new_password>

Update the password by patching the argocd-secret with the
value generated previously, using the following command:

kubectl -n argocd patch secret argocd-secret \

 -p '{"stringData": {

 "accounts.alice.password": "<BCRYPT_PASSWORD>",

 "accounts.alice.passwordMtime": "'$(date -u +"%Y-%m-%dT%H:%M:%SZ")'"

 }}'

Once again, authenticate as alice using the newly updated
password in the Argo CD UI.

Disabling users

Once users have been created in Argo CD, their access can
be disabled. By setting the accounts.<username>.enabled

property to false in the argocd-cm ConfigMap, their access to
both the UI and CLI can be disabled.
For example, to disable access for the user Alice previously
created, set accounts.alice.enabled to "false" in the argocd-cm
ConfigMap as shown next:

apiVersion: v1

kind: ConfigMap

metadata:

 name: argocd-cm

 namespace: argocd

 labels:

 app.kubernetes.io/name: argocd-cm

 app.kubernetes.io/part-of: argocd

data:

 accounts.alice: apiKey, login

 # Disables Alice’s Local User Account

 accounts.alice.enabled: "false"

The ConfigMap can also be updated directly using kubectl
by performing the following command:

kubectl patch -n argocd cm argocd-cm --type='merge' \

-p='{"data": {"accounts.alice.enabled": "false"}}’

Confirm the user alice can no longer access Argo CD by
launching a web browser and attempting to authenticate
using the alice user. You will be greeted with a message
indicating the user account is disabled.
To reinstate the account, either set the
accounts.alice.enabled field to true or remove the field
entirely. The following is how to reenable the alice user
account by removing the property patching the argocd-cm
ConfigMap using kubectl:

kubectl patch -n argocd cm argocd-cm --type=json \

-p='[{"op": "remove", "path": "/data/accounts.alice.enabled"}]'

Once the property has been removed from the argocd-cm
ConfigMap, the user alice will be able to authenticate once
again.
In addition to being able to disable local user accounts, the
Argo CD admin account can also be disabled. Once local
users have been established and at least one of these
accounts has been granted access to perform elevated
actions, it is recommended that the admin account be
disabled to enhance the overall security posture of Argo
CD. Comparable to disabling a local user, the admin user
can be disabled by setting the admin.enabled field to "false"
in the argocd-cm ConfigMap:

apiVersion: v1

kind: ConfigMap

metadata:

 name: argocd-cm

 namespace: argocd

 labels:

 app.kubernetes.io/name: argocd-cm

 app.kubernetes.io/part-of: argocd

data:

 # Disables the admin account

 admin.enabled: "false"

This action can also be performed using kubectl by
executing the following command:

kubectl patch -n argocd cm argocd-cm --type='merge' \

-p='{"data": {"admin.enabled": "false"}}

Auth tokens

Aside from being able to define additional users to access
Argo CD, local users serve another function—the ability to
define and generate authentication tokens, which can be
leveraged by external systems to perform automation
actions. Examples of when auth tokens can be used include

CI/CD tools to control and monitor the synchronization of
Applications as part of an application release pipeline or
within an automation tool to perform actions against Argo
CD.
You may have noticed that when users are defined, they
have the ability to have two associated capabilities: login
and apiKey. While we previously covered the use case for
the login capability where a user is granted the ability to
access the Argo CD web console, the apiKey capability
allows for the generation of an auth token that is associated
with their account.
Let’s walk through how an auth token can be generated
and used.
First, create a new local user called “automation,” which
will be used to demonstrate how auth tokens can be
created, managed, and utilized, by patching the argocd-cm
ConfigMap with the following command:

kubectl patch -n argocd cm argocd-cm --type='merge' \

-p='{"data": {"accounts.automation": "apiKey"}}'

Auth tokens can be generated using the argocd account
generate-token command. Individual user accounts for which
the token will be generated can be targeted using the --
account flag. Otherwise, a token will be generated for the
current logged-in user.
To generate an auth token for the newly created
automation user, execute the following command:

argocd account generate-token --account automation

An auth token consisting of a JSON Web Token (JWT) will
be displayed as the output of the command. This token can
be used to interact with the Argo CD CLI or API. Within the
CLI, the --auth-token parameter can be used when invoking
any command. So, to confirm that the user backing the
token is being honored by the CLI, execute the following
command, which will display information about the user
invoking the command:

argocd account get-user-info --auth-token=<token>

Replace the value of <token> with the token value generated
previously. A response similar to the following should be
displayed:

Logged In: true

Username: automation

Issuer: argocd

Groups:

Alternatively, the ARGOCD_AUTH_TOKEN environment variable
allows for the auth token to be defined once and avoids
needing to provide it as a parameter for each invocation of
the CLI.
Specifying an auth token either through the flag or
environment variable has a higher precedence than any
other previously authenticated user.
Auth tokens, by default, have no expiration, which could be
seen as a security risk. To increase the security posture
surrounding auth tokens, it is recommended that they
expire after a certain amount of time. The --expires-in flag
can be used to specify a duration for which the token is
valid (such as 1h, 90d, etc.).

Generate a timebound auth token of 90 days using the --
expires-in parameter using the following command:

argocd account generate-token --account automation --expires-in 90d

Tokens associated with a user can be displayed using the
argocd account get command. Display details about the
automation user, including the two tokens previously
generated using the following command:

argocd account get --account automation

Name: automation

Enabled: true

Capabilities: apiKey

Tokens:

ID ISSUED AT EXPIRING AT

89ec94b0-aff8-47c6-b59a-229c4b564688 2024-01-20T14:15:16-06:00 2024-04-

19T15:15:16-05:00

70cf36ea-b365-4f04-9fc0-56229cd41620 2024-01-20T12:39:16-06:00 never

Notice how one token has an infinite lifespan, whereas the
other token will expire at a time relative to the time it was
generated.
Tokens can be explicitly revoked whenever there is a desire
to do so. Examples of when one might want to revoke an
auth token are when it has been accidentally exposed or is
being used by a member of the team who no longer
requires access. Tokens are tracked within the argocd-
secret Secret in a key called accounts.<account>.tokens and
while this property can be modified manually, it is much
more straightforward to use the Argo CD CLI.
Delete one of the tokens previously generated by using
argocd account delete-token command and specifying the
name of the account the token is associated with and the ID

of the token. The ID of all auth tokens is shown when
invoking the argocd account get command and is a
Universally Unique Identifier (UUID) that is generated at
token creation time. To use a more friendly name, use the -
-id flag of the argocd account generate-token command.
Revoke an auth token by executing the following command:

argocd account delete-token --account <account> <ID>

SSO

Local users are a great way to onboard a small team into
Argo CD or leverage an auth token to perform automation
actions. As Argo CD adoption grows, especially within a
large organization, the management of users within Argo
CD through the use of the local users feature can become
untenable. Fortunately, Argo CD has the capability to
integrate with external user management tools to offload
the capability to an external system.
Two forms of SSO are available:

Dex OIDC provider

Direct OIDC integration

Either option uses the OpenID Connect (OIDC)
authentication protocol to facilitate how users authenticate
and how their details are consumed by Argo CD.

Dex

Dex is an identity service that is bundled with Argo CD and
runs as a separate pod, acting as a bridge between one or
more identity providers through the use of connectors.
These connectors provide advanced and provider-specific
functionality that maps user details into a format that Argo

CD can understand in a standardized manner. Supported
connectors include Git-based services, like GitHub and
GitLab; enterprise integrations from Google and Microsoft;
and lightweight directory access protocol (LDAP) for
integrating more traditional user-management platforms.
Multiple connectors can be specified to account for one or
more identity services that contain users who would like to
access and leverage Argo CD.

Direct OIDC

If the desired user management tool exposes an OIDC
interface (for example, Microsoft, Google, Keycloak), Argo
CD can delegate the entire authentication process to the
provider. By using this method, many of the same
configurations that have been used previously when
interacting with the OIDC provider by other tools can be
reused for Argo CD, enabling a more native and consistent
method for accessing identity details from the provider.

SSO in action

With an understanding of the options available when
leveraging the SSO capability within Argo CD, let’s look at
the steps involved when implementing SSO in our kind
cluster. While there are a variety of options available for
integrating users that are managed externally, we will
utilize Keycloak, an open source identity and management
tool. As external users, we will describe how to integrate
users stored in Keycloak. Keycloak exposes a native OIDC-
compatible interface, which makes it ideal to demonstrate
an SSO integration with both Dex and the native OIDC
options.

The first step is to deploy Keycloak to your kind cluster.
Tooling is available within the project Git repository to

facilitate the deployment and configuration of Keycloak.
Ensure that you have the project codebase cloned, then
navigate to the ch06 directory.
To simplify the deployment and configuration of Keycloak,
the Keycloak Operator will be used. Execute the following
script to deploy the operator to a new namespace called
keycloak:

helm upgrade -i -n keycloak --create-namespace keycloak-operator

charts/keycloak-operator

Confirm the Keycloak Operator is running by listing the
pods within the keycloak namespace:

kubectl -n keycloak get pods

With the Operator running, let’s work on deploying
Keycloak itself. While the Operator provides the
capabilities to manage the majority of concerns related to
the deployment and configuration of Keycloak, it does not
have the functionality to generate an SSL certificate to
secure Ingress communication.
Use the OpenSSL tool to generate a self-signed certificate
for Keycloak and place the generated certificates within the
file folder of the Keycloak Helm chart. These files will be
leveraged afterward when the chart is installed. Execute
the following command to generate the certificate:

openssl req -subj "/CN=keycloak.upandrunning.local/O=O'Reilly Media/C=US" -

newkey \

rsa:2048 -nodes -keyout charts/keycloak/files/key.pem -x509 -days 365 \

-out charts/keycloak/files/certificate.pem

https://github.com/sabre1041/argocd-up-and-running-book

As you might have noticed, the generated certificate uses
the hostname keycloak.upandrunning.local. Using a similar
process that was utilized in Chapter 3, add the following
value to the /etc/hosts file so that requests are made
against the kind environment:

127.0.0.1 keycloak.upandrunning.local

Now, install the Helm chart to configure the supporting
components, including a PostgreSQL database backend,
TLS certificates previously generated, and the keycloak
custom resource. The Keycloak Operator in turn deploys
and configures Keycloak:

helm upgrade -i -n keycloak keycloak charts/keycloak

In a few moments, an Argo CD pod will be created. This can
be seen by querying the pods in the keycloak namespace:

kubectl get pods -n keycloak

Once the pod is up, navigate to the Keycloak interface at
https://keycloak.upandrunning.local. Accept the self-signed
certificate, and you will be presented with a dashboard, as
shown in Figure 6-1.

Figure 6-1. Keycloak dashboard

Of the available options to choose from, select
Administration Console. This will take you to the sign-in
page (see Figure 6-2).
The password for the default administrator account is
automatically created in a secret called keycloak-initial-
admin and stored within the keycloak namespace by the
Keycloak Operator.

Figure 6-2. Keycloak sign-in page

Extract the value by executing the following command:

kubectl get secret -n keycloak keycloak-initial-admin \

-o jsonpath='{ .data.password }' | base64 -d

Use the retrieved password, and log in with the username
“admin.” Once authenticated, you will be presented with
the Keycloak dashboard within the argocd realm. A realm
in Keycloak is where you define and manage resources,
including users, clients, and other entities.
“master” is the name of the default realm in Keycloak, and
to emphasize a separation of duties, another realm called
“argocd” will be used to define the integration with Argo

CD. The Helm chart that we installed previously created a
new realm called “argocd” and populated the instance with
a baseline set of resources for us to start. Let’s explore the
argocd realm to see what was created for us.
First, ensure that you are using the argocd realm. The
active realm the UI is displaying is located on the upper
lefthand portion of the page. A dropdown of available
realms is also available if there is more than the default
master realm. If the dropdown does not display “argocd”
currently, go ahead and click the dropdown and select
“argocd” so that you are focusing on the appropriate realm
(see Figure 6-3).

Figure 6-3. Keycloak realm selection

Two users were also created: John, who represents an Argo
CD administrator and Mary, a senior software developer.
They can be seen by selecting the Users button on the
lefthand navigation pane, as shown in Figure 6-4.

Figure 6-4. Keycloak Argo CD realm user page

Two Keycloak groups have also been defined:
ArgoCDAdmins, which represent Argo CD administrators,
and Developers, which represent members of the software
development team. John is a member of the admins group
and Mary is a member of the developers group. Group
definition and the membership can be seen by selecting the
Groups button on the lefthand navigation pane, as shown in
Figure 6-5.

Figure 6-5. Keycloak Argo CD realm group page

Now, let’s complete the necessary configuration to enable
Argo CD to integrate with Keycloak. Create a new Keycloak
client by selecting the Clients button on the lefthand
navigation pane and then selecting the “Create client”
button at the top, as shown in Figure 6-6.

Figure 6-6. Keycloak Argo CD client creation

Enter “argocd” as the Client ID and “Argo CD” as the
Client Name (see Figure 6-7).

Figure 6-7. Keycloak Argo CD client setup

After setting these, click Next.
Enable “Client authentication” by switching the toggle to
the enabled position and leaving the remaining values in
their default positions (see Figure 6-8).

Figure 6-8. Keycloak Argo CD enable client authentication

After you set “Client authentication,” click Next.
Set the Root URL and “Web origins” to the URL of the Argo
CD instance: “https://argocd.upandrunning.local.”
Argo CD exposes callback URLs for requests to invoke once
the authentication process is successful for each of the SSO
types at the context paths /api/dex/callback for Dex and
/auth/callback for direct OIDC. As a result, enter the
following values in the “Valid redirect URIs” field. Click the
“Add valid redirect URIs” link to add the second value:

https://argocd.upandrunning.local/auth/callback

https://argocd.upandrunning.local/api/dex/callback

We can then set the default page within the console that a
user is directed to upon a successful authentication. Set the
Home URL to “/applications” so that they will be sent to
the page displaying all of the applications they are allowed
to view.
Finally, enter https://argocd.upandrunning.local into
the text box next to “Valid post logout redirect URIs” (see
Figure 6-9).

Figure 6-9. Keycloak Argo CD client settings

Click Save to create the Keycloak client. This brings you to
the “Client details” page (see Figure 6-10).

Figure 6-10. Keycloak Argo CD “Client details” page

Since the “Client authentication” option was selected, the
OIDC confidential access type was enabled. As a result, a
set of credentials were generated so that Argo CD can use
them to facilitate user authentication via a browser. Obtain
the client secret by selecting the Credentials tab for the
argocd client and select the Copy button to capture the
value to the clipboard. Feel free to select the eyeball icon,
which will display the value (see Figure 6-11).

Figure 6-11. Keycloak Argo CD client credentials

To enable the groups that a user is a member of to be
included as part of the JWT, create a new client scope by
selecting “Client scopes” on the lefthand navigation pane
and then select “Create client scope,” as shown in Figure 6-
12.
Enter “groups” as the name of the client scope and then
click Save, as shown in Figure 6-13.

Figure 6-12. Keycloak Argo CD client scope creation

Figure 6-13. Keycloak Argo CD client scope groups creation

Click on the Mappers tab to enable the groups claim to be
added to the token (see Figure 6-14).

Figure 6-14. Keycloak Argo CD group mappers

Select “Configure a new mapper” (see Figure 6-15).

Figure 6-15. Keycloak Argo CD configure mappers

Select Group Membership (see Figure 6-16).

Figure 6-16. Keycloak Argo CD Group Membership

Enter “groups” for the Name and Token Claim Name.
Deselect “Full group path” and leave the remaining options
enabled (see Figure 6-17).

Figure 6-17. Keycloak Argo CD Group Membership configuration

Click Save to apply the configuration.
Finally, add the new client scope to the argocd client by
once again selecting Clients on the lefthand menu and then
“argocd.”
On the “argocd” client configuration page, select the
“Client scopes” tab (see Figure 6-18).

Figure 6-18. Keycloak Argo CD “Client scopes” selection

Then select the “Add client scope” button.
Select the checkbox next to “groups.” Select the Add
button, and then from the options provided, select Default
so that the groups claim will always be included in the
token without needing to be explicitly requested (see
Figure 6-19).
At this point, Keycloak has been configured to support the
integration with Argo CD. Before we can focus on the Argo
CD configuration itself, there needs to be an adjustment
made within our kind cluster. Recall that we updated the
/etc/hosts file on our machine with the URLs for both Argo

CD and Keycloak so that they would resolve and route
appropriately to our kind cluster.

Figure 6-19. Keycloak Argo CD adding client scopes

Since Argo CD will need to access Keycloak to complete the
authentication process, it too will need some assistance
resolving the Keycloak server. kind makes use of CoreDNS
for intra-cluster DNS resolution. We can perform a similar
pattern where requests made against any address with the
*.upandrunning.local domain (which includes the Keycloak
endpoint) are rewritten to an internal Kubernetes service
for NGINX that was deployed previously.

Edit the CoreDNS configuration file stored in coredns
ConfigMap within the kube-system namespace:

kubectl edit cm coredns -n kube-system

Add the following bolded content to the configuration file,
which will add in the rewrite rule:

apiVersion: v1

kind: ConfigMap

data:

 Corefile: >-

 .:53 {

 rewrite name regex (.*)\.upandrunning\.local

 ingress-nginx-controller.ingress-nginx.svc.cluster.local.

 answer auto

 errors

 health {

 lameduck 5s

 }

Delete the CoreDNS pods so that the changes are picked
up:

kubectl delete pod -n kube-system -l=k8s-app=kube-dns

Verify that applications running within the kind cluster can
resolve Keycloak now that the rewrite rule has been
configured in CoreDNS:

kubectl exec -n ingress-nginx \

svc/ingress-nginx-controller -- curl -skLI https://keycloak.upandrunning.local

| head -1

If the response returned HTTP/2 200, DNS resolution is
working correctly.
Regardless of the type of SSO backend Argo CD
communicates with or the type of SSO integration that is
selected, one property must be set within the argocd-cm
ConfigMap, the URL of the Argo CD server as defined by
the url key. This is so that the callback function works for
SSO. Execute the following command to patch the argocd-cm
ConfigMap:

kubectl patch -n argocd cm argocd-cm \

-p '{"data":{"url": "https://argocd.upandrunning.local"}}'

Now let’s shift our attention to the necessary
configurations within Argo CD.
The Client ID and Secret need to be included within the
SSO configuration so that Argo CD can authenticate with
Keycloak. Since the client secret is a sensitive asset,
instead of explicitly specifying the value, it can be stored in
a Secret and then referenced from the configuration file.
Secrets can be referenced from two locations:

The global argocd-secret secret

A separate secret in the same namespace where
Argo CD is deployed

To avoid mixing default Argo CD and user-provided
content, create a separate secret called keycloak-secret
within the argo namespace and specify the Client ID and
Client Secret from the argocd client previously defined
using the following command:

kubectl create secret generic -n argocd keycloak-secret \

--from-literal=clientSecret=<keycloak_argocd_clientSecret>

In order for Argo CD to make use of the secret for use, it
must include the label app.kubernetes.io/part-of: argocd.
Execute the following command to add the label to the
keycloak-secret secret:

kubectl label secret -n argocd keycloak-secret app.kubernetes.io/part-

of=argocd

Sensitive data stored within Secrets can then be referenced
within Argo CD configuration files. Values beginning with a
$ look for keys within a Secret matching the value. If the
value takes the form $<secret>:a.key.in.k8s.secret, Argo CD

will look for the value within the Secret <secret> and the
key which follows the colon (:).
For example, if the following was declared within a
ConfigMap:

myProperty: $foo:bar

the referenced sensitive value would be sourced from a
secret called foo and the key bar.
Alternatively, sensitive values can also be stored within the
global argocd-secret secret instead of a dedicated Secret.
The only difference when referencing the value within a
configuration is that the name of the secret that the
content would be placed within and the colon (:) separator
is omitted. So, when replicating the prior example, the
following would reference the bar key within the argocd-
secret global secret:

myProperty: $bar

With an understanding of how sensitive resources can be
accessed, in the case of the client secret that was
previously stored in the keycloak-secret Secret, the value
can be referenced within Argo CD configurations using the
form $keycloak-secret:cli⁠ent​Secret.
Now that we have the insights and the necessary
supporting components to enable SSO in Argo CD
complete, let’s walk through how to configure Argo CD to
leverage Keycloak using both Dex and Direct OIDC
integrations.
Either option is enabled by updating the content of the
argocd-cm ConfigMap. It is important to note that Dex and

Direct OIDC integration cannot be enabled at the same
time.

SSO using Dex

SSO for Argo CD using Dex can be enabled by specifying
the dex​.con⁠fig property of the argocd-cm ConfigMap. This
property is an inline representation of the standard Dex
configuration file that would be used in standalone
deployments of Dex. Argo CD manages most of the
boilerplate content, and the end user is responsible for
defining the connectors (the strategy to authenticate
against another identity provider) that will be leveraged.
Since Dex does not contain a connector specifically
engineered for Keycloak, we will leverage the generic OIDC
connector.
Aside from the Client ID and Client Secret, the only other
property that we will need to provide within Dex is the
location of the OIDC issuer (the base URL for OIDC
resources). This address can be accessed from the “Realm
settings” of the argocd realm in the Keycloak UI.
Locate the OpenID Endpoint Configuration link under the
endpoints section on the “Realm settings” page. Clicking on
this link brings up the OIDC discovery document, which
contains all of the OIDC metadata required to understand
how to interact with this endpoint. Since the issuer URL is
just the base URL, we can omit .well-known/openid-
configuration, leaving us with an issuer URL of
https://keycloak.upan⁠d​running.local/realms/argocd.

Update the argocd-cm ConfigMap with the following content:

 dex.config: |

 connectors:

 - type: oidc

 id: keycloak

 name: Keycloak Dex

 config:

 issuer: https://keycloak.upandrunning.local/realms/argocd

 clientID: argocd

 clientSecret: $keycloak-secret:clientSecret

 insecureSkipVerify: true

 insecureEnableGroups: true

The ConfigMap can be modified interactively by executing
the following command:

kubectl edit cm -n argocd argocd-cm

Several items of note from the configurations from the
previous dex.config property:

The clientSecret property is making use of the
Keycloak client secret that was configured in the
keycloak-secret secret.

Since Keycloak uses a self-signed certificate to
enable TLS communication, the insecureSkipVerify
property ignores verification errors.

The insecureEnableGroups property allows Dex to
process groups defined within Keycloak from the
groups claim.

Once the configuration has been applied, launch the Argo
CD UI. If you were previously authenticated and still have
an active session, go ahead and log out.
On the login page itself, notice how there is a new button,
Log In Via Keycloak, in addition to the username and
password option that was used previously. Click on the Log
In Via Keycloak button and you will be transferred to the
Keycloak instance in order to authenticate.

NOTE

If the Log In Via Keycloak button does not appear (if it’s not working), you
may need to forcibly trigger a reload of the configuration by deleting all of
the pods in the argo namespace using the command kubectl delete pods -n
argocd --all.

Recall two users were defined in Keycloak. Go ahead and
authenticate as the Argo CD Administrator John using the
username “john@upandrunning.local” and password
“argocdAdmin123”. Upon a successful authentication, you
will be transferred back to the Argo CD instance, and as
defined within Keycloak, the Applications page.
Select the User Info link on the lefthand navigation pane to
view details related to the current user. Notice how the
username matches the user we authenticated as, and the
issuer matches the value we obtained from Keycloak and
configured within the dex.config property. Most
importantly, the list of groups that John is a member of is
also displayed, confirming that Dex was able to retrieve the
values from the groups claim (see Figure 6-20).

Figure 6-20. Argo CD User Info

Now that we have validated SSO user authentication using
Dex, let’s see how we can enable Argo CD SSO integration
to Keycloak using the direct OIDC approach.

SSO using direct OIDC

Configuring Argo CD to communicate directly with the
OIDC provider offers greater simplicity as well as
eliminates a component (Dex) from being deployed and
managed. The process for enabling direct OIDC integration
mirrors the steps as described in the previous section.

First, remove the dex.config property, as both Dex and
direct OIDC integration cannot be enabled concurrently.
Direct OIDC integration is defined within the oidc​.con⁠fig
property within the argocd-cm ConfigMap. Specify the
following contents to enable direct OIDC integration with
the Keycloak instance:

 oidc.config: |

 name: Keycloak

 issuer: https://keycloak.upandrunning.local/realms/argocd

 clientID: argocd

 clientSecret: $keycloak-secret:clientSecret

 logoutURL:

"https://keycloak.upandrunning.local/realms/argocd/protocol/openid-

connect/logout?client_id=argocd&id_token_hint=

{{token}}&post_logout_redirect_uri={{logoutRedirectURL}}"

As you can see, the contents are almost identical. The final
step is to configure Argo CD to ignore verification errors to
the OIDC endpoint. Instead of this property being defined
within the OIDC config, it is instead a top-level property
within the argocd-cm ConfigMap. Add the following to the
argocd-cm ConfigMap to disable OIDC SSL verification:

oidc.tls.insecure.skip.verify: "true"

This property can also be set by executing the following
command:

kubectl patch -n argocd cm argocd-cm --type='merge' \

-p='{"data": {"oidc.tls.insecure.skip.verify": "true"}}'

With the configurations for direct OIDC integration in
place, navigate to the Argo CD web console at
https://argocd.upandrunning.local. You should be greeted
once again with the option to authenticate using a local
account or using Keycloak SSO. Log in as the Argo CD
Administrator John using the username
“john@upandrunning.local” and password
“argocdAdmin123”. Select the User Info link on the
lefthand navigation pane and confirm all of the properties
align to the expected values, as well as those that were
present previously when Dex was enabled as the provider.

Indeed, from an end user point of view, there is no
difference when authenticating against Dex or direct OIDC
integration for Argo CD SSO. By offloading user
management to an external, purpose-built utility, Argo CD
administrators and users can benefit from a simplified
experience while reducing the management overhead
within Argo CD itself.

SSO using the Argo CD CLI

In addition to being able to access the Argo CD UI with an
SSO user, the same user can also leverage the Argo CD CLI
to be able to take advantage of the capabilities provided by
the tool. To authenticate as an SSO user from the Argo CD
CLI, the --sso flag can be specified, which will trigger the
authentication process with the configured SSO solution.
To enable SSO users to authenticate with the Argo CD CLI,
several additional configurations must be implemented
within the SSO solution. In our environment, this involves
modifications within Keycloak.
Navigate once again to the Keycloak administration console
at https://keycloak.upandrunning.local/admin and
authenticate as the admin user.
Two modifications need to be made within the argocd
Keycloak client:

An additional callback URL

Disable client authentication

When the CLI initiates the SSO authentication process, it
starts a small web server on port 8085. The primary
function of this component is to receive the callback after a
user authenticates successfully.

Within the Keycloak administration console, navigate to the
argocd realm, select Clients on the lefthand navigation, and
select the argocd client. Locate the “Valid redirect URIs”
option and click “Add valid redirect URIs” to make
available an additional textbox entry. Enter
http://localhost:8085/auth/callback into the textbox to
allow Keycloak to trust the CLI endpoint, and click Save
(see Figure 6-21).

Figure 6-21. Keycloak adding localhost callback

Since the CLI operates in a similar fashion to a client-side
web application, it is unable to manage the client credential
associated with the Keycloak client. As a result, the access

type for the client must be changed from “confidential” to
“public,” which removes the requirement to provide a client
secret. Change the access type within the argocd Keycloak
client by locating the “Capability config” section and
deselecting “Client authentication.” Click Save to apply the
change (see Figure 6-22).

Figure 6-22. Keycloak disabling client authentication

One final modification needs to be made, and this change is
specific to the kind cluster we are operating within. The CLI
sends a set of HTTP headers as it authenticates. However,
the content being transmitted is larger than the defaults
that are configured within the NGINX ingress controller.
Fortunately, this issue can be mitigated by setting the
proxy-buffer-size parameter within the NGINX

configuration, which is stored within a ConfigMap in the
ingress-nginx namespace.

Update the NGINX configuration by setting the proxy-
buffer-size value to 100k using the following command:

kubectl patch -n ingress-nginx cm ingress-nginx-controller --type='merge' \

-p='{"data": {"proxy-buffer-size": "100k"}}'

With the required changes applied, log in to the Argo CD
CLI using the SSO user John (john@upandrunning.local) with
the following command:

argocd login --sso --insecure --grpc-web argocd.upandrunning.local

Once authenticated, the same user details that are found
within the User Info page of the Argo CD UI can be seen
within the CLI by executing the following command:

argocd account get-user-info

Logged In: true

Username: john@upandrunning.local

Issuer: https://keycloak.upandrunning.local/realms/argocd

Groups: ArgoCDAdmins

Role-Based Access Control

Once a user has authenticated successfully to Argo CD—
whether it be via the CLI or the UI, they are not granted
unrestricted access to resources by default and must be
granted permissions to perform certain actions. These
controls are managed by Argo CD’s included RBAC
capability, which governs the actions that entities can
perform against Argo CD resources. In the prior section,
we not only established John, the acting Argo CD

administrator, within Keycloak, our user management
system, but also provided him the ability to log in to Argo
CD. However, even though he represents an Argo CD
administrator, without explicit permissions being granted
to his user account, his ability to perform certain actions is
restricted.
See this in practice for yourself. Using the Argo CD CLI,
which has established an authenticated session for John,
attempt to list all of the registered certificates and known
hosts by executing the following command:

argocd cert list

Instead of returning the desired result, you will be
presented with an error message similar to the following:

FATA[0015] rpc error: code = PermissionDenied desc = permission denied:

certificates, ...

A similar message is displayed within the Argo CD UI when
performing the same operation and can be seen by clicking
on Settings on the lefthand navigation pane and selecting
“Repository certificates and known hosts.”
Since John is acting as an Argo CD administrator, he should
be given the ability to manage all aspects of the Argo CD
server. Let’s work toward providing him the access that he
needs by first reviewing the architecture of the Argo CD
RBAC system.

Argo CD RBAC Basics

Argo CD makes use of the Casbin authentication system
(which is a library to manage authorization) to define and
enforce RBAC rules.

NOTE

More information about Casbin can be found at https://casbin.org.

Only two roles are included by default:

role:admin

Unrestricted access to all resources

role:readonly

View, but not modify, all resources

These roles, and the rules behind them, take the form of
comma-separated values (CSV) and provide a way to define
both policies, which can then be applied to users and
groups.
At a high level, there are two definition structures to define
RBAC within Argo CD:

All resources except application-related permissions:

p, <role/user/group>, <resource>, <action>, <object>, <effect>

Applications, ApplicationSets, logs, and exec (which
belong to an AppProject):

p, <role/user/group>, <resource>, <action>, <appproject>/<object>,

<effect>

Resources represents the following:

clusters, projects, applications, applicationsets, repositories, certificates,

accounts,

https://casbin.org/

gpgkeys, logs, exec, extensions

While an action includes:

get, create, update, delete, sync, override, action/<group/kind/action-name>

Once a policy is created, it can then be assigned to a user,
group, or even another role using the following form:

g, <user/group/role>, <role>

Since the goal is to provide not only John but all users who
are members of the ArgoCDAdmins group the ability to
manage Argo CD fully, there is no need to create a new
policy. Instead, the existing role:admin role can be applied
to the group. To do so, the following role mapping policy
can be specified:

g, ArgoCDAdmins, role:admin

RBAC definitions and configurations are specified within a
ConfigMap with the name argocd-rbac-cm within the
namespace Argo CD is deployed within. Policy definitions
are contained, by default, within the policy.csv key.

While we could modify the argocd-rbac-cm ConfigMap
manually or perform an inline patch of the resource, it is
easier to manage policy definitions in a separate CSV file.
Create a CSV file called policy.csv, which includes the
following content:

g, ArgoCDAdmins, role:admin

Since there is no policy.csv content defined initially within
the argocd-rbac-cm ConfigMap, there are no concerns as

they relate to overwriting any content that may have been
defined.
Execute the following command, which will generate a
ConfigMap resource containing the policy.csv file and
merge it with the existing ConfigMap within the cluster:

kubectl create configmap \

-n argocd argocd-rbac-cm \

--from-file=policy.csv=policy.csv --dry-run=client \

-o yaml | kubectl patch configmap -n argocd argocd-rbac-cm \

--type merge --patch-file /dev/stdin

If you inspect the contents of the argocd-rbac-cm ConfigMap,
you will see that the policy.csv within the ConfigMap
matches the content of our local policy.csv file.
Now that members of the ArgoCDAdmins group have been
granted the role:admin role, confirm that John now has the
ability to access and manage all Argo CD resources by once
again attempting to list all of the repository certificates and
known hosts that have been defined:

argocd cert list

This time, the full result list should be returned, confirming
the policy was configured and applied appropriately.

Custom Role Creation

Argo CD includes two roles, role:admin and role:readonly,
that can be designated to users and groups as necessary.
However, as more users and groups adopt Argo CD, there
is need for a separate role to be created that encompasses
the specific permissions desired. In the prior section, we
covered the basic structure of a role and how it can be
applied. In this section, we will define a new role that is

targeted at developers and their use case for deploying
applications into Kubernetes using Argo CD.
If you recall the setup of Keycloak, two users and groups
were defined. We covered John in detail, who represents an
Argo CD administrator. Mary, the other user defined, is a
software developer and is looking to leverage Keycloak, but
as a developer, needs to be able to modify certain
resources (so the role:readonly role does not apply) but
does not need full access to Argo CD (disqualifying the
role:admin role).
Developers require access to perform the following actions:

Deploy and manage applications

View a list of clusters for which they could deploy
their applications

View and access repositories containing their source
code

View and access certificates and known hosts
associated with repositories

Based on the parameters that should be associated with
this role, the following policy can be constructed:

Define Policies for a new role called role:developers

p, role:developers, applications, *, */*, allow

p, role:developers, applicationsets, *, */*, allow

p, role:developers, clusters, get, *, allow

p, role:developers, repositories, get, *, allow

p, role:developers, certificates, get, *, allow

Apply the role:developers role to Developers group

g, Developers, role:developers

Breaking down the policies, we first allow developers
unrestricted access to Applications and ApplicationSets

within all projects. Recall that application-related
permissions have a slightly different scheme, which
includes the name of the project and the resources within
them. To fulfill our requirements, the pattern */* is used,
which allows for access to all projects and their resources.
The other two policy permissions enable access to view all
cluster and repository definitions. Finally, the role is
assigned to the developers group that is defined within
Keycloak.
This policy definition could be appended to the previous
policy.csv file, which was used in the prior section to grant
administrator access to the ArgoCDAdmins group.
However, Argo CD does include the functionality to
separate policy definitions to allow them to be composed (a
common use case when using the Kustomize templating
tool).

Separate policy files must make use of the format policy.
<any_string>.csv. With this in mind, create a new file called
policy.developers.csv with the policy content provided
previously.
With the new policy file created, we could patch the
contents to the argocd-cm ConfigMap using a similar
approach as the policy.csv. However, creating policies can
be a complex process, and introducing a syntactical error is
a common occurrence (such as a missing comma). Applying
a misconfigured policy could potentially risk the stability of
the Argo CD server.
To mitigate these concerns, options are available to
perform validation prior to the resource being included
within the argocd-cm ConfigMap by using the argocd admin

settings rbac validate command and specifying the desired
policy file to validate using the --policy-file parameter.
Execute the following command to validate the
policy.developers.csv policy file:

argocd admin settings rbac validate --policy-file=policy.developers.csv

If the contents of the policy file do not contain any errors,
the message Policy is valid will be displayed. Otherwise,
an error will be thrown.
First, before applying the policy, authenticate to the Argo
CD UI as Mary, our resident software developer, using the
username “mary@upandrunning.local” and password
“argocdDeveloper123”.
Once authenticated, navigate to the list of repository
certificates by selecting Settings on the lefthand navigation
pane and then selecting “Repository certificates and known
hosts.”
As expected, a permission error should be displayed.

Apply the policy.developers.csv policy by patching the
argocd-cm ConfigMap using the following command:

kubectl create configmap \

-n argocd argocd-rbac-cm \

--from-file=policy.developers.csv=policy.developers.csv \

--dry-run=client \

-o yaml | kubectl patch configmap -n argocd argocd-rbac-cm \

--type merge --patch-file /dev/stdin

Attempt to once again view the repository certificates and
known hosts page within the Argo CD settings, and since
the role:developers role has been associated with the

developers group, of which Mary is a member, she is now
able to view all of the defined certificates and known hosts.
Feel free to validate the remainder of the policies
associated with the role:developers role including creating,
synchronizing, and finally, deleting an application.

RBAC Defaults

The RBAC capability provides several different methods for
customizing the level of access that users and groups have
against Argo CD resources. These assets build upon the
default role and their associated policies employed by Argo
CD as specified by the policy.default property within the
argocd-cm-rbac ConfigMap. When Argo CD is installed, this
property is empty—meaning that no level of access will be
granted against any resource. While errors may not be
returned when querying resources, no values will be
returned.
To enable a specific role to be used when authenticating
against Argo CD, the following command can be used to set
the policy.default property:

kubectl patch -n argocd cm argocd-cm-rbac --type='merge' \

-p='{"data": {"policy.default": "role:<name_of_role>"}}'

Anonymous Access

Argo CD, by default, requires that a user authenticate
before being able to access the UI or make queries using
the CLI. However, there are capabilities available to enable
anonymous access to any entity to access Argo CD
resources without needing to authenticate (for example, if
you’re setting up a read-only account to view statuses in
the UI).

Anonymous access can be enabled by setting the
users.anonymous.enabled property within the argocd-cm
ConfigMap with a value of true. Once enabled, users are
granted the level of access as specified by the value in the
policy.default property.

Summary

This chapter provided an overview of how users and groups
can be defined and managed along with how RBAC policies
can be defined and configured in Argo CD, resulting in a
more secure and productive platform for all.
One of the biggest differentiators as it relates to GitOps
tools that Argo CD possesses is the included UI and the
associated integrations—whether it be the command line
interface or API. Understanding how these assets can be
accessed using Argo CD’s included local users facility or
integrating an external user management system through
the SSO functionality enables productivity from day one.
In addition, by using the RBAC capabilities provided by
Argo CD, policies can be constructed into roles and applied
to users and groups to govern the level of access that these
entities have when interacting with the platform.

Chapter 7. Cluster

Management

Argo CD can deploy applications to the Kubernetes cluster
that Argo CD is installed to without further configuration
from administrators. This out-of-the-box default setting
makes it easy for administrators to get up and running and
reap the benefits of Argo CD immediately. Whether you are
just starting off in your GitOps journey or if you are a
seasoned DevOps practitioner, this default setting helps
administrators implement their solutions.
The simplicity of the Argo CD deployment can accelerate
adoption beyond just a single team, to the point where
management of additional clusters is needed and desired.
Although you can deploy Argo CD instances to these
additional clusters, Argo CD has the ability to add, manage,
and deploy resources to additional clusters using a “hub-
and-spoke” design. The “hub” is the instance of Argo CD
itself and is colloquially known as the “Argo CD Control
Plane” in larger installations.
In this chapter, we will explore how clusters are managed
in Argo CD, including how and where they are defined in
the control plane, the ways in which they can be managed,
and how we can set up different role-based access control
(RBAC) policies to control their access in a multi-tenant
situation.

Cluster Architecture

The cluster architecture of Argo CD is fairly
straightforward; upon initial deployment, Argo CD has
access to the local Kubernetes cluster (i.e., the Kubernetes
cluster Argo CD was installed within). This access, as
discussed previously, is enabled by default and can be
referenced in an Argo CD Application deployment as
https://kubernetes.default.svc (if using the server key in the
configuration file) or in-cluster (if using the name key in
the configuration file). The creators of Argo CD realized
that administrators would like to manage more than just
the local Kubernetes clusters but also deploy to and
manage other clusters concurrently—most administrators
would like a single pane of glass view of all their clusters.
Let’s take a look at how clusters are defined and managed
in Argo CD.

Local Versus Remote Clusters

When it comes to clusters, Argo CD doesn’t treat the local
in-cluster any differently than remote clusters. To Argo CD,
it sees the in-cluster as just another deployment target
defined in the Argo CD Application manifest. As we went
over in Chapter 4, this is denoted under .spec.destination in
the Argo CD Application manifest. The following is a
snippet of how the target server is defined with an Argo CD
Application:

spec:

 destination:

 server: https://kubernetes.default.svc

 ## Can also use the following instead of “server”

 # name: in-cluster

 namespace: bgd

Remote clusters are referenced the same way. Again, Argo
CD treats every cluster the same way—so deploying to a
remote cluster is accomplished by merely changing the
destination configuration to the desired target cluster. For
example:

spec:

 destination:

 server: https://cluster1.mydomain.tld:8443

 ## Can also use the following instead of "server"

 ## the following name comes from the cluster secret

 # name: cluster1

 namespace: bgd

NOTE

The namespace in this section refers to the destination namespace where the
manifest will be applied to. It’s also worth noting that the namespace value
will only be set for namespace-scoped resources that have not set a value for
the .metadata.namespace field.

How are clusters defined? How does Argo CD know what
certificate authority (CA) to use to connect to that cluster’s
Kubernetes API endpoint? Or which endpoint to
communicate with when specifying name instead of server
within the destination of an application? What if you want
to use a specific ServiceAccount when connecting to the
remote cluster? In the next section, we will go deeper into
how clusters are defined and how you can further refine
how Argo CD connects to these clusters.

Hub-and-Spoke Design

Before we get into how clusters are defined, it’s important
to understand that when Argo CD manages clusters, it does

so in a hub-and-spoke design. See Figure 7-1 for a high-
level view into what this architecture entails.

Figure 7-1. Argo CD hub-and-spoke design

Argo CD “reaches out” in order to perform actions on the
target cluster. This is often referred to as the “push model.”
This means that configurations are obtained and cached on
the control plane cluster (where Argo CD is running), and
they are “pushed” to the desired destination cluster. It’s
important to keep this in mind when architecting your
installation as considerations, such as firewall rules and
accessing the managed cluster’s Kubernetes API endpoint
need to be taken into account.

How Clusters Are Defined

Now that we’ve established an understanding in how Argo
CD sees clusters (whether it is the local cluster or a remote
cluster) as just Kubernetes API endpoints (or
“destinations”), where does Argo CD retrieve the needed
information for this API endpoint? Since the Kubernetes
API endpoint has already been established as a means to a
connection, Argo CD now needs the credentials for that
Kubernetes API endpoint.

NOTE

From a security point of view, ensure the credentials that Argo CD uses to
connect to your managed clusters are up to your organization’s security
standards. Security with Argo CD will be discussed in Chapter 9.

Cluster credentials are stored in a Kubernetes Secret in the
same namespace as Argo CD is installed within (in our
case, this is the argocd namespace). To that end, you can
surmise that Argo CD clusters are defined via a Kubernetes
Secret. The Secret has the following fields, shown in
Table 7-1.

Table 7-1. Properties of an Argo CD cluster secret

Field Description

name The name given for the cluster. This value
is what is referenced when using the name
property within the destination section of
the Argo CD Application manifest.

server The Kubernetes cluster’s API server URL.
This value is what is referenced when using
the server property in the destination
section of the Argo CD Application
manifest.

namespaces (Optional) A comma-separated list of
namespaces accessible in the cluster.
Cluster-level resources are ignored if this
field is not empty.

clusterResources (Optional) A boolean string (“true” or
“false”) that determines whether Argo CD
can deploy cluster-level resources on this
cluster. Used only if the namespace field is
not empty.

project (Optional) A string to designate this cluster
as available only to the specified Argo CD
project name.

config Written in JSON; represents the connection
configuration.

NOTE

You can only have one secret per cluster, so it’s imperative that you take into
consideration what resources Argo CD will be managing and what level of
access Argo CD needs.

Here is an example of a minimal configuration of the secret
representing a cluster:

apiVersion: v1

kind: Secret

metadata:

 name: prod-cluster

 namespace: argocd

 labels:

 argocd.argoproj.io/secret-type: cluster

type: Opaque

stringData:

 name: prod-cluster

 server: https://prod.k8s.example.com:6443

 config: |

 {

 "bearerToken": "<ServiceAccount token should NOT be encoded>",

 "tlsClientConfig": {

 "insecure": false,

 "caData": "<base64 encoded certificate>"

 }

 }

NOTE

For a more in-depth explanation about all available options, please consult
the official documentation.

It’s worth noting that the bearerToken section in the config
field should not be base64 encoded and is represented in
plain text, while the caData section in the config field should

https://oreil.ly/8U95s

be encoded. Also, the label defines that the content
contained in this secret contains cluster-related properties.
As mentioned earlier, the Argo CD control plane (typically
referred to as in-cluster) is the cluster that Argo CD is
installed on. There is no need to define this cluster.
However, there are use cases where you might need to
further refine the settings. By default, this cluster has no
secret associated with it. You can confirm this assessment
with the following command:

$ kubectl get secrets -n argocd -l argocd.argoproj.io/secret-type=cluster

No resources found in argocd namespace.

This is because Argo CD attempts to have working defaults
for easy deployment. The assumption that Argo CD makes
is that it uses the default Kubernetes Service address
(https://kubernetes.default.svc) for the API endpoint, the
default Kubernetes CA certificate for that endpoint, and the
token for the argocd-application-controller ServiceAccount.
So, if there is a desire to make updates to the in-cluster
configuration, how could that be accomplished?
Fortunately, the solution is simple.
Let’s take the use case where only users who have access
to the sysadmin Argo CD project should be able to deploy to
the in-cluster cluster. To facilitate this requirement, a new
Secret that defines the in-cluster configuration needs to be
created, and within that Secret, the project field must grant
the sysadmin Argo CD project access. First, create the
Kubernetes Secret with the name in-cluster along with the
secret type label indicating that the configuration contains
an Argo CD cluster definition. Take note that the values
specified are the default values with the addition of the
project field.

The following example is a cluster Secret in a file called in-

cluster.yaml:

apiVersion: v1

kind: Secret

metadata:

 name: in-cluster

 namespace: argocd

 labels:

 argocd.argoproj.io/secret-type: cluster

type: Opaque

stringData:

 name: in-cluster

 server: https://kubernetes.default.svc

 project: sysadmin # what we're adding

 config: |

 {

 "tlsClientConfig": {

 "insecure": false

 }

 }

Once the file has been created, you can apply it to your
cluster by running the following (see Figure 7-2):

$ kubectl apply -f in-cluster-secret.yaml

NOTE

You can also update cluster settings in the Argo CD UI under the Settings
section.

Figure 7-2. Argo CD Clusters Settings page

Not only are you able to now see the in-cluster
configuration listed as a Secret, but it also has been scoped
to only be available to users who have access to the
sysadmin Argo CD Project:

$ kubectl get secrets -n argocd -l argocd.argoproj.io/secret-type=cluster

NAME TYPE DATA AGE

in-cluster Opaque 4 74s

NOTE

You will need to also set the appropriate RBAC in order to scope the in-
cluster to only be available to the supplied project. See Chapter 8 for more
information about Argo CD RBAC and Projects.

You can also see the configuration using the argocd CLI:

$ argocd cluster get in-cluster -o json | jq -r .project

sysadmin

We’ve added a project in this configuration for
demonstration purposes. We will go over Projects in depth
in Chapter 8.

Adding Remote Clusters

There are two methods to add remote clusters to Argo CD:
using the argocd CLI and declaratively within a Kubernetes
Secret. We’ll explore each of these methods, but first, let’s
go over the basics of creating a cluster.

Creating a Cluster

In order to demonstrate how to add a remote cluster, we
are going to create another cluster using kind. In order for
both argocd CLI and Kubernetes Secret to work, we must
expose the Kubernetes API endpoint. For this to function
properly, the environment variable of the IP address of the
host that kind is running on must be set.

Set an environment variable called REMOTE_CLUSTER_IP with
the IP address of the host kind is running on:

$ export REMOTE_CLUSTER_IP=192.168.4.134

NOTE

The IP address in your environment will differ.

Given that we are going to be creating a new kind cluster,
we should manage the kubeconfig file separately, export the
KUBECONFIG environment variable to reference a file located
at ~/remote-cluster.config, which will be populated when
the cluster is created:

$ export KUBECONFIG=~/remote-cluster.config

Next, create the kind cluster using the name remote with the
IP address exported previously:

$ kind create cluster --name remote --config - <<EOF

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

networking:

 apiServerAddress: "${REMOTE_CLUSTER_IP}"

EOF

WARNING

You should take caution when exposing your Kubernetes API endpoint on a
public network.

At this point, two kind clusters should be running: the one
we’ve been working with has Argo CD installed, and a new
one called remote that was created now:

$ kind get clusters

kind

remote

NOTE

Your output may differ.

To return to being able to work with the Argo CD cluster,
unset the KUBECONFIG environment variable:

$ unset KUBECONFIG

At this point, we are ready to add the remote cluster to our
Argo CD instance.

Adding a Cluster with the CLI

As mentioned earlier, the argocd CLI utility can be used to
interact with the Argo CD instance—when accessing the
Kubernetes API via kubectl is not accessible or is not
allowed. To that end, we can use this Argo CD CLI tool to
add a cluster using the kubeconfig file that was just created.
Before the cluster can be added, ensure that you are
logged in to your Argo CD instance. If you haven’t already,
you can log in using the following command:

$ argocd login --insecure --grpc-web --username admin \

--password \

$(kubectl -n argocd get secret argocd-initial-admin-secret \

-o jsonpath="{.data.password}" | base64 -d) argocd.upandrunning.local

NOTE

If you changed your admin password, use that password instead of obtaining
the initial admin password.

Once authenticated, the list of currently registered clusters
can be listed:

$ argocd cluster list

SERVER NAME VERSION STATUS MESSAGE

PROJECT

https://kubernetes.default.svc in-cluster 1.29 Successful

Now, let’s add the kind remote cluster we just created with
the argocd cluster add subcommand, while providing the
location of the Kubeconfig path:

$ argocd cluster add kind-remote --yes \

--kubeconfig ~/remote-cluster.config --name remote

The output should look something like the following:

INFO[0000] ServiceAccount "argocd-manager" created in namespace "kube-system"

INFO[0000] ClusterRole "argocd-manager-role" created

INFO[0000] ClusterRoleBinding "argocd-manager-role-binding" created

INFO[0005] Created bearer token secret for ServiceAccount "argocd-manager"

Cluster 'https://192.168.1.254:38187' added

A few things to note about the options from this command:

kind-remote is the name of the Kubernetes context
inside the kubeconfig. To find the name of the
context, we ran kubectl config get-contexts ​-
-⁠kube⁠con⁠fig ~/remote-cluster.config.

--yes confirms adding the cluster (without
prompting).

--name sets the name of the cluster in Argo CD.

NOTE

Argo CD uses the kubeconfig file to connect to the remote cluster and creates
a ServiceAccount called argocd-manager with a corresponding RBAC in the
kube-system namespace. This argocd-manager ServiceAccount is used by Argo
CD to manage the remote cluster.

Once the cluster has been added, it will be visible when
executing the argocd ​clus⁠ter list command once again:

$ argocd cluster list

SERVER NAME VERSION STATUS MESSAGE

PROJECT

https://192.168.1.254:38187 remote Unknown Cluster has

no app...

https://kubernetes.default.svc in-cluster 1.29 Successful

NOTE

The state will be Unknown until something is deployed to the cluster.

The remote cluster is now ready to be deployed to. You can
reference this cluster by the name, remote, or by the server
address, https://192.168.1.254:38187, as indicated in the
output from the prior command in the Argo CD Application
manifest. For example:

spec:

 destination:

 ## "name" can be used instead of "server"

 # name: remote

 server: https://kubernetes.default.svc

 namespace: demo

Deleting a cluster with the CLI is fairly straightforward.
Either the name of the cluster or the server address should
be specified.

NOTE

You should remove this cluster if you want to try out the declarative
approach in the next section. If you’re not planning on trying it out
declaratively, don’t delete the cluster. We’ll be using this cluster later in this
chapter.

Remove the cluster using the argocd cluster rm command:

$ argocd cluster rm --yes remote

Cluster 'remote' removed

Confirm the remote cluster is no longer displayed in the list
of registered clusters:

$ argocd cluster list

SERVER NAME VERSION STATUS MESSAGE

PROJECT

https://kubernetes.default.svc in-cluster 1.29 Successful

Adding a Cluster Declaratively

The Argo CD CLI utility is a great way to work with Argo
CD, as it lowers the barriers of entry. One of the big
advantages is that the Argo CD CLI falls under the
governance of the Argo CD RBAC. So, administrators can
freely give CLI access to the platform without having to
give them access to the Kubernetes API (via CLI or other
methods).
Still, administrators following the GitOps principles would
like a more declarative way to define and manage clusters.

To support this approach, Argo CD administrators can opt
to (as discussed earlier in this chapter) define clusters via a
Kubernetes Secret.

NOTE

Storing Kubernetes Secrets in plain text on source code is not recommended,
and it is a security risk! It is recommended that an appropriate Secrets
management solution should be utilized. Integrations with various Secrets
management solutions can be brokered with operators, like the External
Secret Operator that supports many Secret management backends.

Before creating the Secret representing an Argo CD
cluster, make sure you are using the correct Kubernetes
context (the instance that Argo CD is running within):

$ kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO NAMESPACE

* kind-kind kind-kind kind-kind

The kubectl CLI will be used to create the Secret
representing the remote cluster. The Secret needs to be in
the format that was described earlier in this chapter, and
the necessary information will be extracted from the
kubeconfig file using the kubectl config command. Before we
do that, we need to create a ServiceAccount for Argo CD to
use in the remote cluster. In addition, RBAC-related
resources need to be created and associated with the newly
created ServiceAccount in the remote cluster. These steps
parallel the process that is facilitated by the Argo CD CLI,
which we will emulate.

NOTE

If you are following along and you did the example using the Argo CD CLI,
you don’t need to create the ServiceAccount or the ClusterRoleBinding. You
can skip to the creation of the token.

First, create a ServiceAccount called argocd-manager in the
kube-system on the remote cluster:

$ kubectl create --kubeconfig ~/remote-cluster.config sa -n kube-system

argocd-manager

Next, create a ClusterRoleBinding for that argocd-manager
ServiceAccount, assigning it the built-in cluster-admin role:

$ kubectl create --kubeconfig ~/remote-cluster.config \

clusterrolebinding argocd-manager-role-binding \

--clusterrole=cluster-admin --serviceaccount=kube-system:argocd-manager

Now, generate a token that is associated with the argocd-
manager ServiceAccount for Argo CD to use. The token is
obtained after executing the command. As a result, we will
store it in a variable called TOKEN for later use:

$ kubectl apply --kubeconfig ~/remote-cluster.config -f - <<EOF

apiVersion: v1

kind: Secret

metadata:

 name: argocd-manager-token

 namespace: kube-system

 annotations:

 kubernetes.io/service-account.name: argocd-manager

type: kubernetes.io/service-account-token

EOF

$ TOKEN=$(kubectl get secret --kubeconfig ~/remote-cluster.config -n \

kube-system argocd-manager-token -o jsonpath='{.data.token}' | base64 -d)

Verify that the TOKEN variable is set:

$ echo $TOKEN

Using this information, and information that will be
extracted from the kubectl config command, create the
Secret for Argo CD to use:

$ cat <<EOF | kubectl apply -n argocd -f -

apiVersion: v1

kind: Secret

metadata:

 name: remote

 labels:

 argocd.argoproj.io/secret-type: cluster

type: Opaque

stringData:

 name: remote

 server: $(kubectl config view --kubeconfig ~/remote-cluster.config \

 -o jsonpath='{.clusters[?(@.name == "kind-remote")].cluster.server}')

 config: |

 {

 "bearerToken": "${TOKEN}",

 "tlsClientConfig": {

 "insecure": false,

 "caData": "$(kubectl config view --raw \

--kubeconfig ~/remote-cluster.config \

-o jsonpath='{.clusters[?(@.name == "kind-remote")].cluster.certificate-

authority-data}')"

 }

 }

EOF

NOTE

For more information about the options available when using the kubectl
config command, consult the Kubernetes documentation.

This result from the prior command is a Secret in the argocd
namespace:

https://oreil.ly/ohnox

$ kubectl get secret remote -n argocd --show-labels

NAME TYPE DATA AGE LABELS

remote Opaque 3 2m argocd.argoproj.io/secret-type=cluster

The newly added cluster can now be seen using the Argo
CD CLI tool:

$ argocd cluster list

SERVER NAME VERSION STATUS MESSAGE

PROJECT

https://192.168.1.254:38187 remote Unknown Cluster has

no app...

https://kubernetes.default.svc in-cluster 1.29 Successful

Updating clusters managed by Argo CD can be done via the
CLI (by using argocd cluster set) or by updating the
corresponding Secret (by using kubectl patch or kubectl
edit). Both methods produce the same result and are useful
when there is a need to update cluster configurations, such
as ServiceAccount tokens or CA certificates.
Taking a look from a GitOps point of view, since managed
clusters are defined in Secrets, then it is recommended
that you use a Secret management system. The
aforementioned External Secrets Operator has support for
a lot of backends to help in this case.

Deploying Applications to Multiple

Clusters

As we’re going through these steps, you can get the sense
that Argo CD has the capability to not only manage
multiple clusters, but also the ability to deploy resources to
multiple clusters as well. However, you may have noticed
when going through the Argo CD Application specification
page on the official documentation, that only a single

https://oreil.ly/KLtqG

cluster can be defined with an Argo CD Application
manifest. In a way, you can think of Argo CD Applications
as having a 1:1 relationship with the cluster that
application is being deployed to. Effectively, an Argo CD
Application can be seen as an instance of your running
application.
So, how can we effectively deploy our applications to
multiple cluster destinations? Fortunately, several patterns
are available to achieve this goal.

App-of-Apps Pattern

The App-of-Apps pattern first appeared as a method of
bootstrapping Argo CD instances and can also be used as a
method of recovery from a catastrophic failure or major
outage. This method is also flexible where organizations
have a desire for creating a logical deployment across
many clusters. Another advantage is that you can use other
Argo CD features, like sync waves and sync phases, to
orchestrate (order) Argo CD Application deployments.
As the name suggests, the App-of-Apps pattern is an Argo
CD Application that just contains other Argo CD
Applications. Since Argo CD Applications are just
Kubernetes resources, the Argo CD Application paradigm
can be used with other Argo CD Applications. Take a look
at Figure 7-3 to see how this approach is depicted in the
Argo CD UI.

Figure 7-3. App-of-Apps taken from the Argo CD documentation

The following example can be found in this book’s
accompanying repository. You can apply the “parent” Argo
CD Application by running the following:

$ kubectl apply -n argocd -f ch07/pricelist-app-of-apps.yaml

This Argo CD Application manifest included multiple
Application manifests, which created several Argo CD
Applications:

$ kubectl get applications -n argocd

NAME SYNC STATUS HEALTH STATUS

pricelist-app Synced Healthy

pricelist-config Synced Healthy

pricelist-database Synced Healthy

pricelist-frontend Synced Healthy

Each of these Argo CD Applications represents the same
application, with the difference being they target a
different destination cluster.

https://github.com/sabre1041/argocd-up-and-running-book

Using Helm

Several challenges are introduced when starting to
consider Argo CD Applications to multiple destination
clusters. First, you may be thinking, “That’s a lot of YAML
to write just for one small delta (changing the destination
cluster). While on the other side, I have to change a lot for
my application to run successfully on each cluster.” As a
result, many Argo CD administrators have started utilizing
Helm to parameterize the deployment of Argo CD
Applications.
Let’s take a quick look at the example from the official Argo
CD documentation page for using Helm:

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: guestbook

 namespace: argocd

 finalizers:

 - resources-finalizer.argocd.argoproj.io

spec:

 destination:

 namespace: argocd

 server: {{ .Values.spec.destination.server }}

 project: default

 source:

 path: guestbook

 repoURL: https://github.com/argoproj/argocd-example-apps

 targetRevision: HEAD

As depicted in the previous manifest, certain properties
from the Argo CD Application can be parameterized and
can be injected using a Helm values file. Here’s an
example:

spec:

 destination:

 server: https://kubernetes.default.svc

https://oreil.ly/SxhKs

While this is still a valid (and fully supported) way of
deploying your Argo CD Applications, this pattern of using
Helm was first implemented in a time before Argo CD
Applications could natively be templated. It is
recommended that those who can, migrate to
ApplicationSets. That being said, the App-of-Apps pattern is
still valuable and, in a lot of cases, you will use both.

ApplicationSets

An Argo CD ApplicationSet is a Kubernetes CRD that can
be seen as a templating engine for Argo CD Applications.
This templating engine is fed parameters, known as
generators, which produces N number of Argo CD
Applications based on those provided configurations (which
can also include business logic depending on the generator
selected). The original author of the Argo CD
ApplicationSet controller described ApplicationSets as a
“factory that produces Argo CD Applications.”
The aforementioned generators are a method for producing
the necessary information for an Argo CD Application.
These generators range from simple key/value pairs to
structures based on your Git repository organization layout.
Here is a list of generators at the time of this writing:
List generator

The List generator allows you to target Argo CD Applications
to clusters based on a fixed list of any chosen key/value
element pairs. This is normally where people start, since it’s
basic key/value pairs.

Cluster generator

https://oreil.ly/8hmsC

The Cluster generator allows you to target Argo CD
Applications to clusters, based on the list of clusters defined
in Argo CD. This also includes the ability to automatically
respond to cluster addition/removal in Argo CD.

Git generator

The Git generator allows you to create Applications based on
a configuration file found within a Git repository or based on
the directory structure of a Git repository.

Matrix generator

The Matrix generator may be used to combine the generated
parameters of two separate generators. This is generally
used if you need to mix and match generators.

Merge generator

The Merge generator may be used to merge the generated
parameters of two or more generators. It basically “flattens”
the configuration of the generators used (in contrast to the
Matrix generator that combines). Additional generators can
override the values of the base generator.

SCM Provider generator

The SCM (source code management) Provider generator uses
the API of an SCM provider (for example, GitHub) to
automatically discover repositories within an organization.
This is normally used if you have many Applications in an
organization that you’d like to deploy.

Pull Request generator

The Pull Request generator is used to automatically discover
open pull requests within a repository. This is used typically
for previewing environments or changes.

Cluster Decision Resource generator

The Cluster Decision Resource generator is used to interface
with Kubernetes custom resources that use custom resource-
specific logic to decide which set of Argo CD clusters to
deploy to.

Plugin generator

The Plugin generator gives you the ability to create your
own generator where the other generators don’t quite fit
your particular use case. Generally speaking, if none of the
built-in generators fits your use case, the Plugin generator is
the way to go.

For most organizations, starting off with the List generator,
Cluster generator, or one of the Git generators (there are
two subgenerators) is the easiest way to get started with
Argo CD ApplicationSets. Let’s take another example from
the accompanying repository, where an Application is
deployed using different settings to separate clusters based
on the content originating in different repositories:

$ kubectl apply -n argocd -f ch07/appset-bgd.yaml

With this one manifest, you can see that the ApplicationSet
generated Argo CD Applications based on the parameters

of the List generator:

$ kubectl get applicationsets -n argocd

NAME AGE

bgd 29s

$ kubectl get applications -n argocd

NAME SYNC STATUS HEALTH STATUS

bgd-blue Synced Healthy

bgd-green Synced Healthy

One thing to note about Argo CD ApplicationSets is that
functionality, such as sync waves and sync phases between
Applications, are not fully supported. If there is a need to
leverage such functionality, it is recommended that the
standard App-of-Apps pattern be used for the time being.
That being said, there is an alpha feature (i.e., not ready for
production) called Progressive Syncs that you can read
about in the official documentation site. We will go over
Progressive Syncs in Chapter 10.

Summary

In this chapter, you learned how clusters are defined in
Argo CD and how Argo CD is architected in a hub-and-
spoke design. You also explored how to add, delete, and
manage the lifecycle of the managed cluster. Finally,
several patterns for deploying Argo CD Applications to
different clusters were introduced. In the next chapter, you
will learn how to handle multi-tenant-based deployments of
Argo CD, including considerations that should be taken
under consideration when architecting for multi-tenancy,
along with several patterns and examples.

https://oreil.ly/7Dtv4

Chapter 8. Multi-Tenancy

Multi-tenancy in tech refers to an architecture where a
single instance of software (or infrastructure) serves
multiple tenants. A tenant is typically a group of users who
share common access and privileges within the software—
for example, a company using a SaaS app or a team using a
shared Kubernetes cluster.
Argo CD extends multi-tenancy beyond just basic RBAC. It
has the ability to granularly set access controls based on
the actor performing the action (user, group, or automated
service account), which resource is being accessed, and
what action is being performed.
In Chapter 6, you learned about RBAC and its various uses.
In this chapter, we are going to extend that knowledge by
introducing the Argo CD AppProject concept and how to
manage RBAC configurations on a per-project basis. We’ll
start off by demonstrating different Argo CD deployment
models. Then, we will explore, in detail, what Argo CD
AppProjects are and how to effectively use them in a multi-
tenant system. Finally, we will explore how to perform
resource management using Projects.

Argo CD Installation Modes

There are two primary ways to install Argo CD, and each
includes a set of capabilities for achieving multi-tenancy. As
one might expect, there are advantages and disadvantages,
depending on the chosen deployment mode. Additional
considerations as it relates to multi-tenancy need to be
taken into account depending on how your organization is

laid out, how your release process is handled, and/or if you
have to meet certain criteria for regulation purposes.

Cluster Scoped

The most common and default model for deploying Argo CD
is the cluster-scoped method.

NOTE

This is also the deployment method that we have been using thus far during
our exploration of Argo CD.

This method is used, specifically, for installations that
require Argo CD to act in a multi-tenant when a hub-and-
spoke design is desired. This provides all the tooling and
features needed (like RBAC, AppProjects [more on that
later], and roles/groups) for Argo CD administrators to
create a GitOps platform that can support many
applications, users, teams, and groups within their
organization. From the point of view of Argo CD, it now
becomes the interface on how to interact with all managed
Kubernetes clusters.
The biggest challenge of a cluster-scoped deployment of
Argo CD is that, by default, the service accounts associated
with Argo CD, effectively, have cluster-admin privileges on
all managed clusters. The elevated permissions might be
excessive in some scenarios, posing potential security risks.
This was a design decision to enable Argo CD to fully
manage the cluster. The permissions, however, can be
scoped down using standard Kubernetes RBAC by adjusting
the ClusterRole/ClusterRoleBinding for the Argo CD service
account.

Namespace Scoped

The alternate method for deploying Argo CD as it relates to
multi-tenancy is the namespace-scoped method. This
installation method requires only privileges against a single
namespace, allowing cluster administrators the ability to
install different instances of Argo CD on the same cluster
and then delegate the control over to individual teams.
Since these installations do not have privileges outside of
their own namespace, it is an attractive solution for
security-conscious Argo CD administrators to achieve
multi-tenancy and an increased security posture.
There are a few drawbacks to this type of installation. First,
instead of being able to use the in-cluster cluster (the
default in a cluster-scoped deployment of Argo CD),
additional steps must be taken to configure the local
cluster for use by Argo CD, including setting up the
associated service accounts and RBAC policies. Another
drawback is that the installation assumes no privileges
outside the namespace, so tasks requiring elevated
permissions (e.g., installing CRDs) must be coordinated
with cluster administrators. It’s also worth noting that
there will be operational overhead in managing multiple
Argo CD instances.
Given the number of steps involved for deploying Argo CD
using the namespace method, this book will instead
continue to focus on the cluster-scoped method, and this
chapter will show you how to utilize the included tools and
capabilities needed to set up a multi-tenant system using
this installation method.

Projects

Argo CD has a concept of a Project (which is controlled via
the AppProject CRD). An Argo CD Project provides a
grouping of applications, and it is a point of
RBAC/demarcation for Argo CD. This logical grouping of
Argo CD components is paramount for Argo CD
administrators that are setting up their installation to
support multi-tenancy.
With an Argo CD Project, administrators can:

Restrict the sources of content that can be used (Git,
Helm, etc.)

Restrict where Argo CD Applications can be
deployed to (clusters and namespaces)

Restrict which Kubernetes objects can be deployed
(Deployments, services, CRDs, NetworkPolicies,
etc.)

Restrict who has access to which resources based on
Group/User membership.

Argo CD includes a Project called default. This Project
allows the deployment of any resource to any cluster by
anyone. While you can’t delete the default Project, you can
lock it down to the point where no one can use it. When
Argo CD is initially installed, it has the following
permissions for the default project, which are the most
permissive:

spec:

 sourceRepos:

 - '*'

 destinations:

 - namespace: '*'

 server: '*'

 clusterResourceWhitelist:

 - group: '*'

 kind: '*'

It’s important to note that an Argo CD Application can only
ever belong to one Project. When the AppProject isn’t
specified, the default Project is used.

Resource Management

Resource management is at the heart of an Argo CD Project
and it is what allows Argo CD administrators to set up the
platform to support multi-tenancy. It follows the
“allow/deny” model where the first matching rule takes
precedence. The following are some examples of how this
works.
Let’s review how you manage Git repositories within an
Argo CD Project under the .spec.sourceRepos of an AppProject
manifest:

spec:

 sourceRepos:

 - '!ssh://git@github.com:argoproj/test'

 - '!https://gitlab.com/group/**'

 - '*'

Note the use of the ! symbol to indicate an explicit “deny”
against the associated repositories. In the prior example,
users would not be allowed to deploy from the
git@github.com:argoproj/test repository in the argoproj
GitHub organization; nor would users be allowed to deploy
any repository from GitLab that’s part of the “group”
organization. However, any other repository would be
allowed.

Similarly, you can accomplish the same goal for managing
the clusters and namespaces that can be deployed to under
the .spec.destinations property:

spec:

 destinations:

 - namespace: '!kube-system'

 server: '*'

 - namespace: '*'

 server: '!https://team1-*'

 - namespace: '*'

 server: '*'

Again, note the use of the ! symbol to indicate an explicit
“deny” against those destinations. In this case, users will
be able to deploy to any namespace, except the namespace
kube-system or any cluster with the URL that matches team1-
*. Any other namespace/server combination would be
allowed.

NOTE

The first matching rule takes precedence, so deny rules must appear before
the allow rules to be effective.

You can also limit what Kubernetes objects may or may not
be created. This is for both namespaced and cluster-scoped
objects. For example, to allow all namespaced-scoped
resources to be created, except for ResourceQuota, LimitRange,
and NetworkPolicy; you can set the associated policy in the
.spec.namespaceResourceBlacklist property. For example:

spec:

 namespaceResourceBlacklist:

 - group: ''

 kind: ResourceQuota

 - group: ''

 kind: LimitRange

 - group: ''

 kind: NetworkPolicy

Conversely, you can deny all namespaced-scoped resources
from being created, except for those specified within the
.spec.namespaceResourceWhitelist property. This has the same
format as namespaceResourceBlacklist shown previously.
Cluster-scoped resources can be constrained in a similar
fashion using the .spec.clusterResourceWhitelist and
.spec.clusterResourceBlacklist properties as their
namespace-scoped counterpart. For example, the following
example can be used to deny all cluster-scoped resources
from being created, except for a Namespace:

spec:

 clusterResourceWhitelist:

 - group: ''

 kind: Namespace

In Chapter 6, you learned the basics of RBAC and how it
can be configured at the Argo CD platform level. You can
also configure RBAC at the Argo CD Project level as well.
For example, the following configuration illustrates how to
set a policy that only enables those users with the role:dev
permission the ability to view and sync on the pricelist Argo
CD Project:

spec:

 roles:

 - description: Developers get view and sync

 name: developer

 policies:

 - p, proj:myproj:role:dev, applications, get, pricelist/*, allow

 - p, proj:myproj:role:dev, applications, sync, pricelist/*, allow

 - p, proj:myproj:role:dev, projects, get, pricelist, allow

As we’ve reviewed here, you can see how granular you can
get with resource management with Argo CD. While this
example focuses on applications and projects as resources,
other resource types (repositories, clusters, logs, exec) can
also be controlled via RBAC. You can even apply these
policies to specific users and/or groups. In the following
section, we will go over a use case to see how AppProjects
can be used in your environment.

Use Case: GitOps Dashboard

When working through Chapter 6, you got some experience
working with RBAC. In this section we’ll see the level of
granularity that can be achieved at the Project level. This
enables Argo CD administrators to grant permission
ranging from “read only” to delegating complete control to
specific Argo CD Applications.
The most common pattern Argo CD administrators seem to
start with when implementing RBAC at a project level is to
grant groups/end users the ability to see Applications
within a Project, perform syncs on demand, but not modify
or delete anything. This provides a sort of “developer
portal” where end users can see and perform issue triage
and also do on-demand syncs when needed.

NOTE

In order to complete this section, you must have set up SSO as described in
Chapter 6, as the users and groups will be reused.

Create Project

We will first create the project using the Argo CD CLI,
which will allow us to deploy an Application that is Project
scoped. First, make sure that you are logged in as the
"admin" user, which provides the necessary permissions to
create a Project:

$ argocd account get-user-info -o json | jq .username

"admin"

Retrieve the list of currently defined Projects:

$ argocd proj list -o name

default

Only a single Project, default, will be returned since this is
our first opportunity to manage Projects. Create a new
Project called golist using the following command:

$ argocd proj create golist \

--src '*' --dest '*,*' --allow-cluster-resource '*/*'

This new project should now be present when listing
Projects:

$ argocd proj list -o name

default

golist

With the golist Project created, it can be associated with
newly created Applications. We will configure more
granular RBAC for this Project in a later section.

Deploy Applications

Now that the Project golist has been created, review the
Application manifests in the repository accompanying this
book under the ch08/argocd/applications/ directory:

spec:

 # ...omitted for brevity

 project: golist

Note that each Application will be deployed into the golist
Project as denoted under the .spec.project section of each
manifest. Create each Application using either kubectl or
the argocd CLI (the following example shows use of the
argocd CLI):

$ argocd app create --file ch08/argocd/applications/golist-db.yaml

$ argocd app create --file ch08/argocd/applications/golist-api.yaml

$ argocd app create --file ch08/argocd/applications/golist-frontend.yaml

List the Applications, confirming that they were added to
the project:

$ argocd app list -o name --project=golist

argocd/golist-api

argocd/golist-db

argocd/golist-frontend

The Applications that were deployed are part of an
application stack, which includes a frontend service, a
backend service, and a database. At this point, the
workloads managed by the Applications should be running:

$ kubectl get pods -n golist

NAME READY STATUS RESTARTS AGE

golist-api-764879758b-bs57q 1/1 Running 5 (9m59s ago) 11m

golist-db-mariadb-0 1/1 Running 0 10m

golist-frontend-7647cb44d4-g7kvx 1/1 Running 0 10m

NOTE

The database may take some time to become ready. During this time, you
may notice other Pods in a CrashLoopBackOff state. This is expected and should
correct itself after some time since the restarts occur due to the database not
being available.

Now that the Application has been deployed to the Project,
the next step is to configure RBAC policies within the
Project to grant access to a particular SSO group.

Configure Project

In the previous section, we created the Project imperatively
using the argocd CLI. While a completely valid way of
configuring the Project, the most effective way is to do it
declaratively. This allows us to take full advantage of the
GitOps framework that Argo CD provides.
Take a look in the ch08/argocd/projects/ directory and you
will see a golist.yaml Project file. Reviewing the file reveals
the following contents:

spec:

 # ...omitted for brevity

 roles:

 - description: Developers get view and sync

 name: golist-developer

 policies:

 - p, proj:golist:golist-developer, applications, get, golist/*, allow

 - p, proj:golist:golist-developer, applications, sync, golist/*, allow

 groups:

 - Developers

In the polices section, notice that “get” and “sync” are
allowed for all Applications in the Project. All other actions
are disallowed since there is an implicit “deny” associated

with the RBAC model of Argo CD. Under the groups section
there is a list of SSO groups for which the policies will be
applied against. This group name originates from the OIDC
configuration that was completed in Chapter 6.

TIP

For more information on RBAC and its use, please refer to Chapter 6.

Apply this Argo CD Project manifest in order to set these
configurations:

$ argocd proj create --upsert --file ch08/argocd/projects/golist.yaml

Test Setup

With the configuration of the golist Project complete,
including the deployment of Applications and policies to
grant permissions for a specific group, let’s confirm the
expected results.
Log in to your Argo CD instance as
mary@upandrunning.local (since this user is part of the
Developer group), and you should see the aforementioned
Applications in the Argo CD overview page, as depicted in
Figure 8-1.

Figure 8-1. Applications overview

On the overview page, click on SYNC APPS, select all
Applications, and click on SYNC. You should see all
Applications sync, with the status of Complete, which will
appear similar to Figure 8-2.

Figure 8-2. Sync complete

Now, click on the golist-db “card,” click on DELETE, and in
the pop-up prompt, type in golist-db (leaving the rest of
the default values), and click OK. An error similar to
Figure 8-3 will be displayed.

Figure 8-3. Error when deleting

The ability to delete this Application is disallowed since the
configuration of the golist Project doesn’t allow users in the
Developers group to delete Applications.

Summary

In this chapter, you learned about the two models for how
Argo CD implements multi-tenancy and became familiar
with Argo CD AppProjects. You investigated how to manage
resources using Projects and how to have fine-grained
permissions for not only deploying resources but also the
actions that users can perform once they are deployed.
Finally, you put this knowledge to use by creating an Argo
CD Project, configuring RBAC policies, and verifying that
certain actions could only be performed by members of the
specified group.
In the next chapter, we will deepen our understanding of
how Argo CD manages security. In particular, we will
explore the different methods that can be used to harden

the security level of Argo CD and how to communicate
securely with target systems. In addition, we will also
discuss how sensitive content that is used at various points
within the Argo CD lifecycle can be handled to avoid being
discovered by others.

Chapter 9. Security

One of the top technology concerns, whether from the
perspective of an individual developer or enterprise
organization, is security. Ensuring that systems are
protected in a manner that reduces compromise while
communicating using secure mechanisms are just some of
the steps that can be taken to increase the overall level of
security in an environment. Argo CD includes a number of
native capabilities that support conducting secure
operations and enforces certain requirements for use when
operating and interacting with the platform.
In this chapter, we will explore the different methods that
can be implemented to harden the security level of Argo CD
and how to communicate securely with target systems. In
addition, we will also discuss how sensitive content that is
used at various points within the Argo CD lifecycle can be
handled to avoid being discovered by individuals and
systems that should not be granted access.

Securing Argo CD

One of the key areas where security hardening can be
employed in Argo CD is within the Argo CD server
component, as it represents the location where the REST
API and UI is exposed to end users. Considerations should
be made whenever there are any externally facing
resources, as there is an increased potential where
attackers could gain unauthorized access to Argo CD.
The admin user gives users the ability to simplify initial
setup and onboarding for Argo CD. However, this user also

presents a potential risk for the misuse by an attacker.
First, whenever Argo CD is deployed, a secret called argocd-
initial-admin-secret is created within the namespace where
Argo CD is deployed.
One of the first steps that an Argo CD administrator should
take is to change the default password for the admin user.
Otherwise, anyone with access to read Secrets within the
Argo CD namespace can readily decode the password and
gain elevated access to Argo CD. Fortunately, Chapter 6
covered the steps in detail for changing the admin
password as well as deleting the Secret containing the
initial password, as the contents are no longer valid. Of
course, if the admin user is no longer being used or
needed, the account can be disabled entirely to completely
eliminate the potential risk. Steps to accomplish this task
are also described in Chapter 6.
Beyond managing user access, securing communications
with the Argo CD server at the transport level is critical.
This involves ensuring that all interactions with the API and
UI occur over encrypted channels. When Argo CD was
deployed, the --insecure extra argument was added within
the Helm values file. By specifying this parameter, the Argo
CD server starts without TLS enabled, allowing the
communication with the server to occur without any form
of encryption.
Encrypting network traffic using TLS certificates is almost
a must these days, as it guarantees that the communication
with Argo CD cannot be easily observed as it is being
transferred. Implementing TLS often involves creating,
managing, and renewing certificates, which can be a
barrier for some users. We saw some of these steps
firsthand when configuring Keycloak as an OIDC server in
Chapter 6.

Fortunately, Argo CD simplifies the process for enabling
TLS by automatically generating a set of self-signed
certificates at server startup, eliminating the need to
communicate insecurely whenever the --insecure option is
not enabled. Let’s update the configuration of Argo CD by
removing the use of the --insecure extra argument.

While we could update the argo-cd-argocd-server
deployment manually, let’s use Helm to deploy a new
release of the Argo CD chart and remove the --insecure
property from the Helm values file.
The updated values file can be found in the
ch09/helm/values directory of the repository accompanying
this book. Execute the following command to enable TLS
within the Argo CD server:

helm upgrade -i argo-cd argo/argo-cd --namespace argocd --create-namespace \

-f ch09/helm/values/values-argocd-secure.yaml

You can wait for the rollout of the new settings by checking
the status of the Argo CD API server deployment by
running the following:

kubectl rollout status -n argocd deployment/argo-cd-argocd-server

With the new release rolled out, launch a web browser and
navigate to the Argo CD UI at
https://argocd.upandrunning.local.
What you quickly observed by attempting to navigate to the
Argo CD UI is that something is not configured correctly.
Your browser most likely reported an error with too many
redirects being the cause (see Figure 9-1).

Figure 9-1. Too many redirects

So, what could be the issue?
By default, when the Argo CD Helm chart configures the
Ingress resource, it performs what is known as edge
termination, resulting in TLS traffic being terminated at the
NGINX ingress controller. Traffic is then sent to Argo CD
unencrypted. When removing the --insecure argument from
the Argo CD server, we effectively closed the method of
communication that the NGINX was expecting to be able to
use. Argo CD responds to the request, redirecting to the
secure channel, but the subsequent request from NGINX
still attempts to connect insecurely. This cyclical loop
continues until the browser’s maximum redirect limit is
reached, resulting in the error.

There are several ways that this issue can be solved,
including establishing a new TLS connection from NGINX
to communicate with Argo CD. However, the simplest
method is to offload the management of certificates entirely
and pass through the connection to the Argo CD backend
without any form of TLS termination within the NGINX
controller. To accomplish this task, two changes need to be
made:

Set the nginx.ingress.kubernetes.io/ssl-passthrough
annotation on the Ingress resource; this informs the
NGINX ingress controller to forward encrypted
traffic directly to the backend.

Enable SSL passthrough support within the NGINX
ingress controller by specifying the --enable-ssl-
passthrough CLI argument at startup, as this feature
is disabled by default.

CLI arguments for the NGINX controller can be defined
within the controller.extraArgs Helm value and by
specifying controller.extraArgs.enable-ssl-passthrough=true;
SSL passthrough support will be enabled.
Enable SSL passthrough support within the NGINX ingress
controller by updating the Helm chart using the values-
ingress-nginx-ssl-passthrough.yaml values file in the
ch09/helm/values directory by executing the following
command:

helm upgrade -n ingress-nginx ingress-nginx ingress-nginx/ingress-nginx \

-f ch09/helm/values/values-ingress-nginx-ssl-passthrough.yaml

Finally, specify both the nginx.ingress.kubernetes.io/ssl-
passthrough: "true" and nginx.ingress.kubernetes.io/force-

ssl-redirect: "true" annotations on the Ingress resource of
Argo CD within the Helm values file to not only enable SSL
passthrough support on requests made against this Ingress
resource but to automatically redirect insecure connections
(HTTP) to their secure counterparts (HTTPS).

Upgrade the Argo CD Helm chart using the values-argocd-
secure.yaml values file within the ch09/helm/values

directory by specifying the following command:

helm upgrade -i argo-cd argo/argo-cd --namespace argocd --create-namespace \

-f ch09/helm/values/values-argocd-secure.yaml

With SSL passthrough support enabled on both the NGINX
ingress controller and within the Ingress resource for the
Argo CD server, once again navigate to
http://argocd.upandrunning.local in a web browser. Accept
the self-signed certificate warning that is presented within
the browser from the automatically generated Argo CD
certificate to confirm the Argo CD server is once again
accessible, now with end-to-end TLS support.

Configuring TLS Certificates

The automatic generation of TLS certificates by Argo CD
enables the ability to securely communicate without any
additional effort by the Argo CD administrator. However,
complications are introduced when relying on this feature,
as any external system that communicates with the Argo
CD server will struggle to fully trust the certificate, as it is
always generated when the instance starts up. Instead of
relying on the automatic certificate generation feature
within Argo CD, it is recommended that static certificates
be provided by the Argo CD administrator so that secure

and reliable communication can be achieved when
communicating with Argo CD components.
While TLS certificates can be configured within each Argo
CD component (including Dex and the repo server) to avoid
the automatic TLS certification generation feature, since
end users will directly communicate with the Argo CD
server, we will limit our discussion to only this component.

Generating Argo CD TLS Certificates

TLS certificates can be created for the purpose of securely
communicating with the Argo CD server. The process for
generating certificates was covered briefly in Chapter 6
when Keycloak was deployed to support SSO-based
authentication. The key difference in this case is that two
sets of certificates, a root certificate and another for the
Argo CD server, will be generated to enable the creation of
a certificate chain. By creating the Argo CD server TLS
certificate on top of a root certificate, only the root
certificate will be needed to trust an array of certificates
that could be created in the future to serve other purposes
or components.
Generate the root certificate by executing the following
command:

openssl req -nodes -x509 -sha256 -newkey rsa:4096 \

 -keyout root.key \

 -out root.crt \

 -days 365 \

 -subj "/O=O'Reilly Media/CN=Argo CD: Up and Running Root CA" \

 -extensions v3_ca \

 -config <(\

 echo '[req]'; \

 echo 'distinguished_name=req'; \

 echo 'extensions=v3_ca'; \

 echo 'req_extensions=v3_ca'; \

 echo '[v3_ca]'; \

 echo 'keyUsage=critical,keyCertSign,digitalSignature,keyEncipherment'; \

 echo 'basicConstraints=CA:TRUE')

Next, generate the TLS certificate for Argo CD based on
the root certificate stored in the root.crt and root.key files:

 openssl req -nodes -x509 -sha256 -newkey rsa:4096 \

 -keyout argocd.key \

 -out argocd.crt \

 -days 365 \

 -subj "/O=O'Reilly Media/CN=argocd.upandrunning.local" \

 -extensions v3_ca \

 -CA root.crt \

 -CAkey root.key \

 -config <(\

 echo '[req]'; \

 echo 'distinguished_name=req'; \

 echo 'extensions=v3_ca'; \

 echo 'req_extensions=v3_ca'; \

 echo '[v3_ca]'; \

 echo 'keyUsage=critical,digitalSignature,keyEncipherment'; \

 echo 'subjectAltName=DNS:argocd.upandrunning.local'; \

 echo 'extendedKeyUsage=serverAuth'; \

 echo 'basicConstraints=CA:FALSE')

TLS certificates for the Argo CD server are defined in a
Secret called argocd-server-tls within the namespace
containing Argo CD. Since a root certificate was also
generated in addition to the certificate for the Argo server,
combine the two certificates into a single file called argocd-
fullchain.crt containing the entire certificate chain:

cat argocd.crt root.crt > argocd-fullchain.crt

Now create the argocd-server-tls secret:

kubectl create -n argocd secret tls argocd-server-tls \

 --cert=argocd-fullchain.crt \

 --key=argocd.key

The Argo CD server automatically detects the creation of
the argocd-server-tls Secret and will load the newly
provided certificate. Navigate to the Argo CD UI and
confirm that the newly generated certificate chain is being
used. You will once again be greeted with a warning
related to trusting the provided certificate. By inspecting
the certificate, you can confirm that it matches the instance
created previously, as shown in Figure 9-2.

Figure 9-2. Web browser displaying the contents of the provided TLS certificate

Accept the self-signed certificate to proceed to the Argo CD
UI.

NOTE

The root certificate can be configured at an operating system level to avoid
the warnings related to untrusted connections. Since the configurations are
operating system dependent, the steps will not be covered in detail.

The Argo CD server, including how external resources
communicate with the REST API and UI, is just one of the
areas for which TLS certificates can be configured. In the
following sections, we will explore some of other ways the
TLS certificates play a role within Argo CD.

Repository Access

Argo CD, as a tool that implements GitOps practices,
interacts with a variety of externally facing resources to
source content that can be applied to one or more
Kubernetes clusters. These interactions can be configured
to communicate in a secure fashion, such as requiring the
use of TLS certificates.
Thus far, we have sourced all of the exercise content from
the Git repository that corresponds to this publication. This
repository is hosted in publicly hosted Git service, and
while this service greatly simplifies how anyone can easily
access the content, it does limit the type of configurations
that can be applied to demonstrate the capabilities of Argo
CD. In order to avoid these limitations, we will deploy a Git
server of our own to demonstrate some of the ways that
Argo CD can be configured to securely communicate with
Git repositories.
Given the popularity of Git, there are a multitude of options
available when looking to operate a self-hosted Git server,
ranging from an instance that exposes just the Git protocol
to fully functional collaboration suites. Gitea is an open
source Git platform that offers a good middle ground as it
includes a number of useful features, such as source code
and project management capabilities, but is also
lightweight compared to other options in the market.

Much like how Argo CD and the rest of the supplemental
tools that have been deployed throughout this book, Gitea
will be installed using a Helm chart. To simplify the
interaction with the Gitea instance, it will be initialized with
a set of content that we will use throughout this chapter
and contained within a wrapper chart located in the
ch09/helm/charts/gitea directory.
Before the wrapper chart can be used, first, add the
upstream Gitea Helm repository:

helm repo add gitea-charts https://dl.gitea.com/charts/

helm repo update

A custom Helm values file is located in the
ch09/helm/values directory of the repository of this book.
Take a moment and inspect the values-gitea.yaml file within
this directory containing the Helm values. Notice within the
ingress property, details related to tls configuration are
provided, including the name of a Secret containing TLS
certificates. Unlike how Argo CD was configured, TLS
termination will not occur at the Gitea instance and will
instead take place within the NGINX ingress controller. By
including the reference to the Secret containing TLS
certificates, these assets will automatically be picked by
and configured by the NGINX ingress controller.
The creation of the TLS Secret is an “out-of-band” action
and occurs before the installation of the Helm chart. Let’s
now create a TLS certificate using the same TLS root
certificate that was used for Argo CD. Execute the
following command to generate a new certificate pair for
Gitea:

 openssl req -nodes -x509 -sha256 -newkey rsa:4096 \

 -keyout git.key \

 -out git.crt \

 -days 365 \

 -subj "/O=O'Reilly Media/CN=git.upandrunning.local" \

 -extensions v3_ca \

 -CA root.crt \

 -CAkey root.key \

 -config <(\

 echo '[req]'; \

 echo 'distinguished_name=req'; \

 echo 'extensions=v3_ca'; \

 echo 'req_extensions=v3_ca'; \

 echo '[v3_ca]'; \

 echo 'keyUsage=critical,digitalSignature,keyEncipherment'; \

 echo 'subjectAltName=DNS:git.upandrunning.local'; \

 echo 'extendedKeyUsage=serverAuth'; \

 echo 'basicConstraints=CA:FALSE')

Next, create a new namespace called gitea that will be used
to create the Secret containing the TLS certificates and the
Gitea instance:

kubectl create namespace gitea

Now, add the previously generated TLS certificate to the
namespace within a Secret called git-server-certificate.
Similar to the Argo CD server, the Gitea and root certificate
must be combined into a single file so that they can be
added to the Secret:

cat git.crt root.crt > git-fullchain.crt

Create the Secret containing the combined certificate and
private key:

kubectl create secret tls -n gitea git-server-certificate \

--cert=git-fullchain.crt --key=git.key

Finally, deploy the Gitea instance by installing the wrapper
Helm chart with the corresponding values file. Prepare the

wrapper chart by updating the dependencies to pull down
the upstream Gitea chart and then install the wrapper
chart:

helm dependency update ch09/helm/charts/gitea

helm upgrade -i --create-namespace -n gitea gitea ch09/helm/charts/gitea \

-f ch09/helm/values/values-gitea.yaml

Once the chart has been deployed successfully, launch a
web browser and navigate to
https://git.upandrunning.local. Accept the use of the self-
signed certificate, which will then direct you to the Gitea
home page, depicted in Figure 9-3.

Figure 9-3. The Gitea UI

On the top right corner of the page, click the Sign In link
and use the following credentials:

Username: gitea_admin

Password: Argocdupandrunning1234@

Once logged in, you will be redirected to the Gitea landing
page (see Figure 9-4).

Figure 9-4. The Gitea landing page

Let’s take a moment and review the content that has been
automatically populated within the Gitea instance. An
organization called upandrunning was created and contains
a set of Git repositories that will be used throughout this
chapter as different concepts are introduced.
On the right side of the page within the Repository box,
locate and select the “upan⁠d​running/ch09-tls” repository
(see Figure 9-5).
The repository includes a directory called manifests, which
contains the Kubernetes resources that will be

synchronized by Argo CD.
To make use of this repository as a source of content in
Argo CD, an application called ch09-tls is found within the
ch09/argocd directory in the accompanying book repository
in a file called ch09-tls-application.yaml.

Figure 9-5. The TLS repository

Apply the manifest to the Kubernetes cluster by executing
the following command:

kubectl apply -f ch09/argocd/ch09-tls-application.yaml

Check the status of the Application using the argocd CLI:

argocd app get ch09-tls

Upon inspecting the output, you will notice that the sync
was not successful, and the cause (which is also displayed)

is noted:

Failed to load target state: failed to generate manifest for source 1 of 1:

rpc error: ...

Similar to the message that was presented when the Gitea
instance was accessed for the first time in a web browser,
trust could not be established between the Argo CD
repository pod and Gitea. Since a custom certificate
authority (root certificate) was created for these exercises,
Argo CD is unaware of the authenticity and will, by default,
deny all communication.
Fortunately, Argo CD provides several options for
managing trust when communicating with remote
repositories.

Configuring TLS Repository Certificates

TLS certificates can be configured within Argo CD to allow
for the secure communication with remote repositories.
These configurations can be applied using either the UI,
CLI, or native Kubernetes resources. Let’s use the Argo CD
UI to add the certificate associated with Gitea so that Argo
CD will be able to interact with the remote repository in a
secure fashion.
Launch the Argo CD UI at
https://argocd.upandrunning.local. Click on Settings and
then select “Repository certificates and known hosts.” Click
on Add TLS Certificate to launch the dialog for adding the
Gitea certificate.
In the Repository Server Name, enter
git.upandrunning.local. Copy the contents of the
combined git-fullchain.crt file that was created in the prior
section when deploying the Gitea instance in the TLS

Certificate (PEM Format) text area. Click the Create
button, and the newly added certificates will be displayed
in the list of known and trusted TLS certificates, as shown
in Figure 9-6.

Figure 9-6. TLS repository certificates within the Argo CD UI

Now that the TLS certificates associated with Gitea have
been configured in Argo CD, display the configured
applications by clicking on the Applications button and then
select the ch09-tls Application. Check the status of the
application to determine if the resources stored in the Git
repository were applied to the Kubernetes cluster now that
Argo CD has been configured to trust the Gitea instance. If
the application is still in an errored state, click the Refresh
button to manually trigger Argo CD, which will allow the
application to attain a healthy and synchronized state.
TLS certificates associated with repositories can also be
managed using the Argo CD CLI using the argocd cert
subcommand. List the configured repository using the
argocd cert list command:

argocd cert list

What you may have noticed in both the results from the
preceding command and the page in the Argo CD UI is that
it contains more than the list of TLS repository certificates.
Also present is the list of known SSH hosts, which will be
covered in a later section.

TLS repository certificates can be removed using the argocd
cert rm command. To remove the previously added
certificates associated with the Gitea instance, execute the
following command:

argocd cert rm git.upandrunning.local

To add the Gitea certificate back to Argo CD, use the argocd
cert add-tls command with the hostname to associate with
the certificate and the location of the certificate using the -
-from flag on the local machine:

argocd cert add-tls git.upandrunning.local --from git-fullchain.crt

Of course, since Argo CD defines its configurations in a
fully declarative fashion, TLS repository configurations can
be managed directly within the argocd-tls-certs-cm
ConfigMap, the same resource that both the CLI and UI
interact with.
The ConfigMap is structured in a straightforward manner,
where the key represents the hostname associated with the
certificate and the value being the certificate itself:

apiVersion: v1

kind: ConfigMap

metadata:

 name: argocd-tls-certs-cm

 namespace: argocd

data:

 <hostname>: |

 <certificates>

Protected Repositories

Thus far, all interactions with remote repositories (whether
they be from a Git or Helm source) have been with
resources that are readily available and accessible and do
not enforce any form of access restrictions. Since the
content that is managed by Argo CD can contain either
sensitive information or relate to the configuration of the
Kubernetes clusters or applications, it is important that
appropriate controls are applied to restrict access to only
the individuals and systems that require it.
Argo CD includes support for communicating with remote
repositories using either HTTPS- or SSH-based credentials.
Both of these credential types and their associated
configuration will be described in detail against resources
stored within the Gitea instance previously deployed.

HTTPS Credentials

The deployment of the Gitea instance automatically created
a set of repositories that require credentials be provided to
access the content. They are denoted within the Gitea UI
with the word “Private” next to the repository. Several
options are available when authenticating with Gitea using
an HTTPS-based credential and include a username and
password combination or an access token.
The ch09-credentials-https repository within the Gitea
instance and in the upandrunning organization will be used
to integrate Argo CD using HTTPS-based credentials.
First, let’s explore how Argo CD reacts when it attempts to
fetch resources that it does not have access to. Apply the
ch09-credentials-https application located within the
ch09/argocd/ch09-credentials-https-application.yaml file:

kubectl apply -f ch09/argocd/ch09-credentials-https-application.yaml

Check the status of the ch09-credentials-https application
using the Argo CD CLI:

argocd app get ch09-credentials-https

As expected, the application is failing since the content
cannot be accessed, as authentication is required:

Failed to load target state: failed to generate manifest for source 1 of 1:

rpc error:

code = Unknown desc = authentication required

Similar to TLS certificates, repository credentials can be
managed by either using the Argo CD UI or CLI, and the
configurations that are made using either of these tools are
realized as a Kubernetes Secret.
First, use the Argo CD UI to define the credentials to
access the ch09-credentials-https repository by navigating
to the Settings page and selecting Repositories in a web
browser. Click the Connect Repo button to begin the
process for defining repository configuration.
Enter the following into the dialog:

Connection method: https

Project: default

Repository URL:
https://git.upandrunning.local/upandrunning/ch09-

credentials-https.git

Username: gitea_admin

Password: Argocdupandrunning1234@

Additional options are available for configuring TLS client
certificates to enable mutual authentication as well as
ignoring TLS verification when connecting to remote
repositories.
Since mutual authentication was not configured, and the
Argo CD server has been configured to trust the
certificates exposed by the Gitea instance, those options
will not be used.
Click the Connect button to create the repository
configuration.
Confirm the connection status has a checkmark indicating
that verification of the connectivity between Argo CD and
the remote repository was successful, as shown in Figure 9-
7.

Figure 9-7. Successful connection to the Git repository

With the repository configured and confirmed, navigate to
the Applications page, select the ch09-credentials-https
application, and click the Refresh button, which will make
use of the repository configuration created previously to
enable the successful synchronization of the application.
Configuring repository credentials can also be
accomplished using the Argo CD CLI with the argocd repo
subcommand. Using a similar flow that was accomplished
in the previous section when managing TLS certificates,
first list the defined repository configurations using argocd
repo list:

argocd repo list

TYPE NAME REPO

...

git https://git.upandrunning.local/upandrunning/ch09-credentials-

https.git ...

Remove the previously configured repository using the
argocd repo rm command and include the name associated
with the repository (https://git.upan⁠d​
running.local/upandrunning/ch09-credentials-https.git as in
the previous example):

argocd repo rm https://git.upandrunning.local/upandrunning/ch09-credentials-

https.git

Add the repository configuration back to Argo CD using the
argocd repo add command while specifying the Git
repository URL, username, and password:

argocd repo add https://git.upandrunning.local/upandrunning/ch09-credentials-

https.git \

--username=gitea_admin --password=Argocdupandrunning1234@

One of the benefits of the CLI over the UI when adding
repository configurations is that connectivity against the
remote repository is validated in real time before it is
added, and an appropriate error is presented. The UI will
add the repository regardless of whether the connection to
the remote repository was successful.
When a new repository configuration is added, a Secret is
created within the namespace Argo CD is deployed within
containing the provided properties. In Chapter 7, you saw
how Argo CD clusters are also defined as Kubernetes
Secrets and use the argocd.argoproj.io/secret-type=cluster

label to denote that the contents contain properties
defining an Argo CD cluster.
An Argo CD repository configuration is defined in a similar
fashion, but utilizes the value of the
argocd.argoproj.io/secret-type label as repository. The
following is how the ch09-credentials-https repository
configuration would be represented as a Secret:

apiVersion: v1

kind: Secret

metadata:

 annotations:

 managed-by: argocd.argoproj.io

 labels:

 argocd.argoproj.io/secret-type: repository

 name: ch09-credentials-https

 namespace: argocd

stringData:

 password: Argocdupandrunning1234@

 type: git

 url: https://git.upandrunning.local/upandrunning/ch09-credentials-https.git

 username: gitea_admin

type: Opaque

Aside from a username and password, both Argo CD and
Gitea support the use of tokens as a form of authentication.
A token can be thought of as a password that typically has
a separate lifecycle than a standard user account password.
Most Git-based solutions include support for some form of
token-based authentication. Tokens also have the benefit of
being scoped to specific resources or functions, such as
access to only certain repositories or the ability to perform
certain functions within those repositories (read versus
write).
Credentials associated with repositories can be updated
using either the Argo CD UI or using the argo repo add
command. To update an existing repository configuration,

include the --upsert flag when invoking the CLI to apply the
desired changes.

SSH-Based Authentication

The other primary option for authenticating against remote
repositories is to use SSH keys. SSH-based authentication
involves a cryptographic keypair, a public key, and a
private key. The public key is broadly shared and used to
determine whether trust should be established, while the
private key is proof of the user’s identity. Let’s illustrate
how Argo CD can authenticate with the remote Gitea
instance to retrieve manifests using SSH-based credentials.

The first step is to generate an SSH keypair using the ssh-
keygen command. Create a new keypair in the current
directory using the following command:

ssh-keygen -t ed25519 -f argocd_ssh -C "argocd@upandrunning.local" -q -N ""

A private key was generated in the file argocd_ssh, while the
associated public key was generated in the file
argocd_ssh.pub. It is important to note that SSH keys with
passphrases are not currently supported in Argo CD.
Next, add the public key to Gitea so that it will be able to
trust the Argo CD instance when it attempts to
communicate using the private key. Gitea supports
associating SSH keys with either a user or with individual
repositories. To limit the level of access that Argo CD has
against the Gitea instance, the previously generated SSH
key will be associated with only a single repository within
Gitea using a facility called “Deploy Keys.”
Navigate to the Gitea instance
(https://git.upandrunning.local) and locate the

upandrunning/ch09-credentials-ssh link within the box
denoted by Repositories on the right-hand side of the page.
Click on Settings and then Deploy Keys. Select the Add
Deploy Key to define the key that should be trusted for the
repository.
Enter argocd in the Title textbox and paste the contents of
argocd_ssh.pub file from the generated SSH keypair. Click
the Add Deploy Key to add the public SSH key to the
repository.
Now that Gitea has been configured, the next step is to
configure Argo CD. Navigate to the Argo CD instance
(https://argocd.upandrunning.local) and once again revisit
the Repository configuration page by clicking on the
Settings button and then selecting Repositories.
Adding an SSH repository follows a very similar process
that was described previously using TLS certificates
(https). Click the Connect Repo button. Enter the following
into the fields in the dialog:

Connection method: ssh

Project: default

Repository URL: git@gitea-

ssh.gitea:upandrunning/ch09-credentials-ssh.git

In the “SSH private key data” field, enter the contents of
the SSH private key stored in the argocd_ssh file.
Click the Connect button to verify the connection.

NOTE

Argo CD is taking a slightly different path when communicating with the
Gitea instance over SSH. Traffic is leveraging the internal Kubernetes
Service network, as the NGINX ingress controller is only exposing HTTP/S-
based traffic (80/443). While this configuration does limit direct connectivity
over SSH, alternate methods, like kubectl port-forward, can be used to
connect to Gitea via SSH if needed.

Unfortunately, adding the repository will result in a failed
connection state. Even though the SSH key that is being
used to communicate with the Gitea has been configured at
a repository level, an additional step needs to take place for
Argo CD to trust connecting to the Gitea instance via SSH.
The SSH protocol includes a series of verification steps to
enforce that connections to remote sources are trusted
prior to allowing the connection being established. This
process of requiring trust is similar to how TLS-based
connections require that certificates are trusted and
verified. SSH clients maintain a list of the public keys that
they trust and reference these entries at connection
initiation.
To enable Argo CD to connect to Gitea, the public key
exposed by the Gitea instance needs to be added to the list
of known SSH hosts that Argo CD maintains within the
argocd-ssh-known-hosts-cm ConfigMap. These entries can
be managed on the “Repository certificates and known
hosts” page within the Settings section of the Argo CD UI
or with the argocd cert add-ssh CLI subcommand.

ssh-keyscan is one of the tools that can be used to obtain the
public key from remote servers. Since SSH access is not
exposed outside of the Kubernetes clusters, kubectl exec
will be used to execute the ssh-keyscan command to

communicate with Gitea. The output of the command will
be redirected to the argocd cert add-ssh command, which
will add the public key to the list of known hosts in Argo
CD.
Execute the following command to obtain and add the
public key to Argo CD:

kubectl -n argocd exec -c repo-server \

$(kubectl get pods \

-l=app.kubernetes.io/component=repo-server \

-n argocd \

-o jsonpath='{ .items[*].metadata.name }') \

-- ssh-keyscan gitea-ssh.gitea | argocd cert add-ssh --batch

Confirm the public key was added to Argo CD by navigating
to the “Repository certificates and known hosts” page
within the Settings section of the Argo CD UI, as shown in
Figure 9-8.

Figure 9-8. The SSH key present within the Argo CD UI

With the Gitea instance added to the list of known SSH
hosts, return to the Repositories page within the Settings
section and confirm the ch09-credentials-ssh repository is
displaying a successful status. If the status remains in a
Failed state, disconnect the repository by selecting the
kabob menu icon and clicking Disconnect. The repository
can then be added once again using the values described
earlier in this chapter. Once again, confirm that the
repository is reporting a successful connection to Gitea.
With the connection to the repository established, create an
application that synchronizes the contents into the

Kubernetes cluster. Execute the following command from
the ch09 directory of the accompanying project repository:

kubectl apply -f ch09/argocd/ch09-credentials-ssh-application.yaml

Confirm that the ch09-credentials-ssh application was not
only added successfully but was synchronized successfully,
verifying the integration between Argo CD and Gitea using
SSH-based communication.

Enabling Reuse Through Credential Templates

One item that might have come to mind when working
through this chapter and each of the steps necessary to
configure the connectivity to repositories from Argo CD is
the long-term management and scalability considerations.
While ultimately only two repositories were configured,
time and effort were dedicated to support the setup,
configuration, and verification. Replicating for each
repository at a large organization scale, and it becomes a
nightmare to consider.
Fortunately, Argo CD includes a capability called credential

templates, which allows for a single repository
configuration to be defined that can then be reused across
multiple repositories. Credential templates make use of
URL prefix matching when selecting potential repositories
for which the configuration should be applied to.
For example, instead of defining a configuration for each
individual repository, a single credential template that
utilized the URL prefix https://git.upand​run⁠ning.local/upand​
run⁠ning, it would match all of the repositories that we have
used thus far, as they are all within the same Gitea
organization. However, if a repository configuration is

defined at an individual repository level, it will take
precedence over a credential template.
To set up a credential template from the Argo CD UI,
configure the HTTPS or SSH repository configuration, as
described throughout this chapter, but instead of selecting
“Connect,” select “Save as Credential Template.”

From an Argo CD CLI perspective, the argocd repocreds
subcommand enables the management of credential
templates. The content that is ultimately persisted as a
Secret specifies the label argocd.argoproj.io/secret-
type=repoc-reds, which differentiates itself from a standard
repository configuration.
While the use of credential templates will not be covered in
depth, feel free to experiment by removing the existing
repository configurations and defining a single repository
configuration that would match all of the private
repositories in the upandrunning Gitea organization.

Enforcing Signature Verification

Argo CD plays a key role in the overall delivery of software.
By managing how and when applications are deployed, it is
important to ensure that nothing has unwillingly
compromised the integrity of the system. Recent attacks on
the software supply chain have caused both organizations
and government entities to take a closer look at how they
deliver software. One method for ensuring that no
malicious activities have occurred during the normal
course of how software is built and delivered is to apply
cryptographic signatures at various steps throughout this
process. By enabling the use of signatures, not only is there
a mechanism to understand the origin of the content, but

there is an assurance that no unwanted or unexpected
actions occurred after the signature was applied.
Support for signature verification is available in Argo CD,
and, once enabled, the synchronization of resources can be
achieved when the referenced Git repository has a revision
that has a GNU Privacy Guard (GnuPG or GPG) signature
present, and the keys used to sign the content have been
trusted by Argo CD.
The enforcement that content be signed is applied at a
Project level and when configured, it applies to every
application associated with the project.
Signature verification is enabled by performing the
following steps:

Import the public key that was used to sign the
content.

Configure a project and associate one or more of the
public keys that Argo CD trusts.

Since signature verification applies against commits in a
Git repository, at the time of this publication, signature
verification is not supported for Helm repositories.

Enable Signature Verification

In order to begin enforcing signatures, a GnuPG-formatted
public key must be configured in Argo CD. An existing
public key may be used, or a new keypair can be generated.
If your machine does not have the GPG command-line tools
installed, follow the steps on the GnuPG website to
download, install, and configure the tools on your local
machine.
Once the tools have been installed, generate a keypair:

https://oreil.ly/aizFO

gpg --full-generate-key

When prompted, generate an RSA-formatted key with a key
size of your choosing. Selecting the default size that is
suggested is acceptable. When specifying your personal
information, be sure to use an email address that you will
remember, as it is needed later when referencing the
generated key.
Once a keypair has been generated, obtain the ID of the
key:

KEY_ID=$(gpg --list-secret-keys --keyid-format=long \

| grep sec | cut -f2 -d '/' | awk '{ print $1}')

Export the public key in armored format so that it can be
added to Argo CD. Be sure to replace the email that was
used when generating the key into the following command:

gpg --output public.pgp --armor --export <email>

GPG keys can be managed either within the GnuPG public

keys page within the Argo CD UI or the CLI using the
argocd gpg subcommand.

Add the exported public key using the argocd gpg add
command:

argocd gpg add public.pgp

Confirm the key was added successfully by viewing the list
of keys in the Argo CD UI or by using the argocd gpg list
command of the CLI.

GPG public keys are stored in the argocd-gpg-keys-cm
ConfigMap, which enables the management of this content
in a declarative fashion.

Since signature verification is enforced at a Project level
and to avoid affecting any of the existing applications that
have been created previously, create a new Argo CD
Project called ch09-gpg by applying the AppProject manifest
stored in the ch09-gpg-appproject.yaml file from within the
ch09/argocd directory of the accompanying repository:

kubectl apply -f ch09/argocd/ch09-gpg-appproject.yaml

With the new Argo CD Project created, enable signature
verification by adding the ID of the GPG key that was
created previously. Navigate to the Projects page from
within the Settings page of the Argo CD UI.

Select the ch09-gpg Project and locate the GPG Signature
Keys section. Click Edit and then Add Key. Select the ID of
the GPG key from the dropdown and then click Save.

Signature Verification in Action

At this point, signature verification has been enabled
against the ch09-gpg project.
To illustrate just how Argo CD performs and enforces
signature verification, create an application that references
content in the ch09-gpg-signatures repository in the Gitea
instance where commits have not been signed:

kubectl apply -f ch09/argocd/ch09-gpg-signatures-application.yaml

Inspecting the status of the application reveals a
ComparisonError with a message similar to the following:

Target revision a9e4a971219b690e2d591605417f8cacba6ab0cf in Git is not signed,

but a signature is required

Argo CD has blocked the Application from syncing because
the commit associated with the revision was not signed
with the configured GPG key.
To resolve the error and enable the application to
synchronize successfully, a signed commit must be made
against the repository. Since your machine has already
been configured with a set of GPG keys, and the public key
has been installed in Argo CD as the method for signature
verification, let’s clone the repository locally, enable your
Git client to use the newly created GPG key, and add a
signed commit that can be pushed to the remote repository
for Argo CD to use.
First, clone the contents of the ch09-gpg-signatures

repository to your local machine and change into the
repository directory:

git -c http.sslVerify=false clone \

https://git.upandrunning.local/upandrunning/ch09-gpg-signatures.git

cd ch09-gpg-signatures

Enter the username and password for Gitea if prompted.

NOTE

The http.sslVerify=false config option was specified to ignore TLS certificate
errors when communicating with the self-signed certificate exposed by the
Gitea instance and will be used in each interaction with the Git server.

Next, associate the GPG key with the Git client so that it
can be used to sign commits by specifying the ID of the key
that was stored previously as the KEY_ID environment
variable:

git config --global user.signingkey $KEY_ID

Now, update the content of the README.md file in the
ch09-gpg-signatures repository so that a signed commit can
be made:

echo "Now with signed commits!" >> README.md

Create a signed commit by specifying the -S flag to enable
GPG signing:

git commit -S -am "Updated README"

Confirm the commit was signed by running the following
command:

git log --show-signature

A commit log message with a signature applied will appear
similar to the following:

gpg: Signature made Sun Jul 7 03:52:14 2024 UTC

gpg: using RSA key 5CG73B102FD36W88C6F522A1B27298BS6A0E355B

gpg: Good signature from "John Doe <jdoe@upandrunning.local>" [ultimate]

With a signed commit being present, the content can be
pushed to the remote Gitea instance:

git -c http.sslVerify=false push origin main

Return to the Argo CD UI and the ch09-gpg-signatures
application and click Sync to synchronize the application
with the content in the Git repository (see Figure 9-9).

Figure 9-9. The result of a successful app sync with signed commits

Since the HEAD revision is signed with the public key that
is configured for the Project the Application is associated
with in Argo CD, the synchronization was successful and
the associated manifests were added to the Kubernetes
cluster, as shown in Figure 9-9.
Signature verification of Git commits is just another way
that security can be applied within Argo CD. However, if
there was a desire to disable the capability entirely, the
ARGOCD_GPG_ENABLED environment variable can be added to the
argocd-server, argocd-repo-server, and argocd-application-
controller deployments.

Application Sync Impersonation

In Argo CD, the service account used for synchronizing
Application resources is the same as the one used for
control plane operations. This setup allows users to
decouple the service account for Application
synchronization from the control plane service account.
While this is effective in most scenarios, particularly in
large multi-tenant environments, administrators often rely
heavily on Argo CD’s built-in RBAC system to manage
permissions. However, there are cases where additional

restrictions are required to meet regulatory requirements,
adhere to organizational policies, or enhance security by
adding extra layers of protection beyond RBAC.
By default, Application Sync operations in Argo CD inherit
the same privileges as the control plane. In a multi-tenant
environment, this means that the control plane must be
provisioned with the highest level of privileges required by
any application. For instance, if an Argo CD instance
manages ten applications and only one requires elevated
privileges, the control plane itself must be granted the
same level of access. This setup poses a security risk:
malicious tenants could potentially exploit these elevated
privileges to gain unauthorized access to resources in the
cluster. While Argo CD’s multi-tenancy model, through
AppProjects, helps restrict what individual applications can
do, it is not sufficient to fully mitigate the risk. If the Argo
CD control plane were to be compromised, attackers could
still gain elevated, and even cluster-admin level access.
Starting with Argo CD version 2.14, the Kubernetes
Impersonation feature can be used to mitigate these
concerns. By integrating this feature, Argo CD can now
perform Application Sync operations using a specific
service account specified by the administrator, rather than
relying solely on the control plane’s service account,
providing an extra layer of security.

Enable Sync with Impersonation

To enable Application Sync impersonation, the
application.sync.impersonation.enabled option in the data
field in the argocd-cm ConfigMap must be set to "true":

apiVersion: v1

kind: ConfigMap

metadata:

 name: argocd-cm

 namespace: argocd

data:

 application.sync.impersonation.enabled: "true"

You can patch the running argocd-cm ConfigMap by using
the provided patch file in the repository that accompanies
this book. Apply the patch by running the following
command:

kubectl patch cm/argocd-cm -n argocd --patch-file \

ch09/argocd/ch09-impersonation-cm-patch.yaml

Restart the Application controller StatefulSet by running
the following:

kubectl rollout restart statefulset -n argocd \

-l app.kubernetes.io/component=application-controller

It’s always good practice to wait for the application
controller to become ready after the restart. This can be
achieved by running the following:

kubectl rollout status statefulset -n argocd \

-l app.kubernetes.io/component=application-controller

The impersonation feature in Argo CD can only be
enabled/disabled at the system level, meaning that once it
is enabled or disabled, it is applicable to all applications
managed by Argo CD.

Define the Service Account to Use for

Impersonation

Destination service accounts to impersonate can be
configured within an AppProject under the

.spec.destinationServiceAccounts field. For each target
destination server and namespace, the corresponding
service account to be used during the sync operation
should be specified using the defaultServiceAccount field.
Applications associated with this AppProject will
automatically utilize the designated service account for
their respective destinations.
During the Application Sync operation, the controller
iterates through the list of defined
destinationServiceAccounts in the AppProject. If multiple
matches exist for a given destination server and namespace
combination, the first valid match is selected. If no
matching service account is found, the sync operation will
report an error. Some administrators add a “catchall” to
mitigate this potential issue. For example:

spec:

 destinationServiceAccounts:

 - server: in-cluster

 namespace: '*' # Doing * targets every namespace in the defined cluster

 defaultServiceAccount: default

However, it is not necessary to define a catchall and many
administrators elect not to do so. This is on purpose to
further lock down the sync by purposely failing instead of
using a defined catchall service account. In our example
scenario, we won’t be using a catchall, so you can see how
Application Sync impersonation works. Inspect the
ch09/argocd/ch09-impersonation-project.yaml file, and you’ll
see the following manifest:

apiVersion: argoproj.io/v1alpha1

kind: AppProject

metadata:

 name: ch09-impersonation

 namespace: argocd

spec:

 description: Impersonation Example Project

 sourceRepos:

 - '*'

 clusterResourceWhitelist:

 - group: '*'

 kind: '*'

 destinations:

 - name: '*'

 namespace: '*'

 server: '*'

 destinationServiceAccounts:

 - server: https://kubernetes.default.svc

 namespace: impersonation

 defaultServiceAccount: nginx-deployer

Note in the .spec.destinationServiceAccounts we have the
namespace impersonation with the nginx-deployer service
account defined for syncs. Apply this manifest to create the
project with impersonation:

kubectl apply -f ch09/argocd/ch09-impersonation-project.yaml

This creates the AppProject with Application Impersonation
Sync set up for the namespace impersonation. Any
Application defining this namespace will use the defined
nginx-deployer service account.

Deploying an Application with Impersonation

At this point, you can deploy the Application into the
AppProject we just created. Inspect the ch09/argocd/ch09-
impersonation-app.yaml file:

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: nginx

 namespace: argocd

spec:

 project: ch09-impersonation

 source:

 repoURL: https://github.com/sabre1041/argocd-up-and-running-book

 targetRevision: main

 path: ch09/manifests/nginx

 destination:

 namespace: impersonation

 server: https://kubernetes.default.svc

 syncPolicy:

 automated:

 prune: true

 selfHeal: true

Note, we defined ch09-impersonation under the .spec.project
field and also the corresponding destination under the
.spec.project.destination field that matches our AppProject
configuration. Apply this Application manifest using the
following command:

kubectl apply -f ch09/argocd/ch09-impersonation-app.yaml

By running kubectl get application nginx -n argocd -o yaml,
you will notice the following message in the
.status.operationState.syncResult.resources field:

deployments.apps "nginx" is forbidden: User

"system:serviceaccount:impersonation:nginx...

In order for us to overcome this error, we need to set up
not only the namespace, but also the service account and
any roles and RoleBindings needed for the sync to be
successful.
First, create the namespace:

kubectl create namespace impersonation

Next, create the service account in the newly created
impersonation namespace:

kubectl create sa nginx-deployer -n impersonation

Create the role restricted in the impersonation namespace,
allowing for the management of Deployments:

kubectl create role restricted --verb=* --resource=deployment -n impersonation

Next, create a rolebinding in the impersonation namespace,
specifying the nginx-deployer service account from the same
namespace:

kubectl create rolebinding restricted-binding --role=restricted \

--serviceaccount=impersonation:nginx-deployer -n impersonation

NOTE

The steps of creating the namespace, the service account, the role, and the
RoleBinding should be performed by the administrator first, as
impersonation is considered an administrative task. These resources could
also be (and is recommended) stored in Git and managed via GitOps
workflows.

Now, initiate a sync using the argocd CLI. Upon completion,
this should result in a successful deployment of the
Application to the cluster:

argocd app sync --project=ch09-impersonation nginx

If you inspect the cluster by running kubectl get deploy,pods
-n impersonation, you will see that the resources were
successfully deployed:

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/nginx 1/1 1 1 5m35s

NAME READY STATUS RESTARTS AGE

pod/nginx-5869d7778c-6h4v8 1/1 Running 0 5m35s

This AppProject is now set up to use the nginx-deployer
service account anytime an Application tries to deploy
resources into the impersonation namespace. Since the
nginx-deployer service account is set up to only manage
Deployments, any other resource that is attempted to be
deployed will fail. This provides the fine-grained control
many security teams are looking for when implementing
Argo CD.

Summary

Security will continue to remain an important area of
consideration for both Kubernetes developers and
administrators. Users interacting with Argo CD can feel
confident knowing that the platform includes several
features specifically designed to enforce common security
practices.
In this chapter, you first learned how to serve custom TLS
certificates, enabling end-to-end encryption between the
caller and Argo CD. Then, you deployed an instance of
Gitea to act as a Git repository, thus allowing for more
specialized configurations, which are common in many
enterprise organizations, to be explored.
Once the Gitea instance was established, you extended
your understanding of the benefits of operating securely
with TLS certificates and configured trust within Argo CD
so that resources stored in Gitea could be accessed
securely.
We then transitioned to accessing content stored in
protected Git repositories and the various methods that

Argo CD supports for specifying credentials, including
HTTPS with usernames/passwords and tokens along with
SSH keys.
Finally, the integrity of content from Git repositories was
hardened by enforcing that commits were signed using a
GnuPG key, ensuring that no malicious actions occurred
from the time the commit took place to when Argo CD
accessed the content.
Also, we set up Application Sync Impersonation to provide
finer-grained access to Argo CD deployments, adding an
additional level of security for sync operations.
It is also important to note that while this chapter did cover
quite a number of capabilities related to security, it is not a
comprehensive list of features that Argo CD supports in
this realm. However, the topics covered are some of the
most common that apply to Argo CD administrators and
users.

Chapter 10. Applications

at Scale

In Chapter 4, you were introduced to the Application
Custom Resource Definition (CRD) object, which facilitates
the logical grouping of your Kubernetes manifests. This
Application object serves as the atomic unit of work in Argo
CD, allowing you to manage a collection of Kubernetes
objects as a single entity. Argo CD uses the Application
CRD to manage the entire lifecycle of this collection of
Kubernetes objects.
Argo CD Applications operate autonomously, meaning that
one Application does not have awareness of the status or
health of another. This autonomy can pose challenges,
especially in organizations employing a microservices
architecture where each component resides in its own
Application custom resource. For instance, certain
Applications may need to be deployed sequentially—such as
a database before a backend service or a service mesh
before the main application. As infrastructure scales,
managing these dependencies and Argo CD Applications
becomes increasingly complex.
In this chapter, we will explore various deployment
patterns available in Argo CD. These include approaches
like the App-of-Apps with sync waves and ApplicationSets
with Progressive Sync. These patterns will assist in
managing dependencies between Argo CD Applications and
facilitate the deployment and management of these
Applications at scale.

Argo CD Application Drawbacks

In Chapter 5, we explored the customization of the Argo CD
sync operation to accommodate the varying complexities of
deployments. While not explicitly stated, the chapter
implicitly conveyed the default behavior of an Argo CD
Application, which applies Kubernetes manifests as is.
Although this approach is effective in many scenarios, it
can pose challenges when the deployment sequence of
workloads is critical. To address this issue, the chapter
introduced the concept of sync waves. Sync waves provide
a mechanism to orchestrate the deployment of Kubernetes
resources in a predetermined sequence, thereby ensuring
the correct order of operations. This feature is instrumental
in mitigating potential issues arising from unordered
deployments, thus enhancing the reliability and
predictability of the deployment process. For example, if
you want to create a Namespace before a Pod, set the value of
the argocd.argoproj.io/sync-wave annotation appropriately:

apiVersion: v1

kind: Namespace

metadata:

 name: web

 annotations:

 argocd.argoproj.io/sync-wave: "1"

apiVersion: v1

kind: Pod

metadata:

 labels:

 run: nginx

 annotations:

 argocd.argoproj.io/sync-wave: "2"

 name: nginx

 namespace: web

spec:

 containers:

 - image: nginx

 name: nginx

While sync waves are an effective method for ordering the
manifests within a single Argo CD Application, they are
limited to the resources contained within that specific
application. They do not apply to the Argo CD Application
itself or facilitate ordering between multiple Argo CD
Applications. Additionally, Argo CD Applications are
designed to be autonomous, meaning there is no inherent
mechanism for establishing dependencies or relationships
between individual applications.
While sync waves effectively handle the ordering of
resources within a single Argo CD Application, they fall
short in scenarios requiring coordination between multiple
Applications. This limitation arises because of the
autonomy of an Argo CD Application and the lack of built-in
inter-Application dependency management. Unfortunately,
there is no native feature within the Argo CD Application
specification to enforce such dependencies. However, it is
still possible to establish dependencies between Argo CD
Applications using various tools, methods, and deployment
strategies available within the Argo CD ecosystem.
To address this gap, the following strategies can be
employed within the Argo CD ecosystem:

Eventual consistency

App-of-Apps with sync waves

ApplicationSets Progressive Sync

Before delving into these methods, there are several
important considerations to keep in mind: these will
include things like resource health, Argo CD Application
health checks, and Argo CD Application-specific health.

Consideration and Best Practices

There are some important considerations that must be
taken into account when implementing any of the
approaches with respect to scaling and orchestrating Argo
CD Applications. With that in mind, we will review these
considerations before delving into any implementation
details.
So before diving into how to handle Argo CD Application at
scale, we’ll go over some prerequisites and best practices.
These include readiness/liveness probes, Argo CD
Application health checks, and resource health checks.

Set Up Probes

It’s generally good practice to configure readiness and
liveness probes within Kubernetes manifests. For those
who aren’t familiar with the concept, liveness probes
assess whether a resource (like a container in your
Deployment) is up and running (aka “alive”); readiness
probes check to see if your resources are ready to accept
connections. For more information about readiness and
liveness probes, take a look at the official Kubernetes
documentation on the topic.
Setting up readiness and liveness probes is not only a best
practice, but also paramount to an Argo CD Application.
Argo CD Application health is based on the collective health
of its resources being deployed. Without proper readiness

and liveness probes, Argo CD might mark resources as

“healthy” and “synced” when, in fact, they might still be

deploying.

Let’s take the scenario of a MySQL database. If we deploy
the MySQL StatefulSet without any probes, Argo CD will

https://oreil.ly/HQ7cY

mark the MySQL StatefulSet as healthy, even though it
might be going through its startup process. Furthermore, it
will also be marked as healthy when the StatefulSet isn’t
even ready to start receiving requests! To that end, you can
see how adding probes can help when deploying resources
with Argo CD. Here is an example of adding probes for
MySQL:

spec:

 template:

 spec:

 containers:

 - image: mysql:5.6.51

 name: mysql

 livenessProbe:

 tcpSocket:

 port: 3306

 initialDelaySeconds: 12 # How long to wait before probe starts

 periodSeconds: 10

 readinessProbe:

 exec:

 command: ["mysql", "-h", "127.0.0.1", "-e", "SELECT 1"]

 initialDelaySeconds: 12

 periodSeconds: 10

In this example, Kubernetes considers the MySQL
StatefulSet as “alive” when port 3306 responds to requests,
and it will consider it “ready” when a query executes
successfully.

Argo CD Health Checks

Argo CD doesn’t only rely on the generic Kubernetes health
status for the objects it’s managing, but it also provides
built-in health checks for a multitude of Kubernetes types,
which are then surfaced to the overall Application health
status. Health checks are written in Lua, and you can see
the current built-in checks in the Argo CD GitHub repo.

https://www.lua.org/
https://oreil.ly/R2xo9

There are times where there’s a need to add or customize
these health checks. For example, if you’re working with a
Kubernetes Operator (perhaps because you have either
written one for your organization or because you’re using a
relatively new one), you might need to add these custom
health checks in the resource.customizations field in the
argocd-cm ConfigMap. The format looks like the following:

data:

 resource.customizations: |

 <group/kind>:

 health.lua: |

For example, here is what the health check for the cert-
manager.io/Certificate object would look like in the argocd-
cm ConfigMap:

data:

 resource.customizations: |

 cert-manager.io/Certificate:

 health.lua: |

 hs = {}

 if obj.status ~= nil then

 if obj.status.conditions ~= nil then

 for i, condition in ipairs(obj.status.conditions) do

 if condition.type == "Ready" and condition.status == "False"

then

 hs.status = "Degraded"

 hs.message = condition.message

 return hs

 end

 if condition.type == "Ready" and condition.status == "True" then

 hs.status = "Healthy"

 hs.message = condition.message

 return hs

 end

 end

 end

 end

 hs.status = "Progressing"

 hs.message = "Waiting for certificate"

 return hs

NOTE

Cert Manager is a popular addition to Kubernetes clusters, as it simplifies
the creation and rotation of TLS certificates. More information can be found
at the official website.

To read more about Argo CD health checks please refer to
the official documentation.

Application Health

Another important thing to note is that the health check for
the Argo CD Application CRD has been removed in Argo CD
1.8 (see the related issue for more information). This is an
important thing to keep in mind, especially in the case of
orchestrating Argo CD Application deployments that rely
on each other. Since some of the patterns we’re going to go
through rely on the Argo CD Application health check’s
presence, we’ll need to add it to the argocd-cm ConfigMap.
This is easily done. Here’s an example:

data:

 resource.customizations: |

 argoproj.io/Application:

 health.lua: |

 hs = {}

 hs.status = "Progressing"

 hs.message = ""

 if obj.status ~= nil then

 if obj.status.health ~= nil then

 hs.status = obj.status.health.status

 if obj.status.health.message ~= nil then

 hs.message = obj.status.health.message

 end

 end

https://cert-manager.io/
https://oreil.ly/9Ifyf
https://oreil.ly/lTWby

 end

 return hs

With all these considerations (not only are they general
best practices, but they’re also prerequisites for the

upcoming use cases) in place, we can start exploring
different patterns on how to create Argo CD inter-
Application dependencies.

Eventual Consistency

One of the patterns worth mentioning for Argo CD
Application orchestration is to rely on the fact that things
will eventually be consistent with retries, which is the
philosophy that Kubernetes was built on. This can easily be
set up using the Argo CD Application manifest itself and
also by using Argo CD Sync Option annotation. Here’s an
example Application manifest:

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: simple-go

spec:

 destination:

 name: in-cluster

 namespace: demo

 source:

 path: deploy/overlays/default

 repoURL: 'https://github.com/christianh814/simple-go'

 targetRevision: main

 project: default

 syncPolicy:

 automated:

 prune: true

 selfHeal: true

 syncOptions:

 - CreateNamespace=true

 retry:

 limit: 5

 backoff: # how long to wait before the next retry

 duration: 5s

 maxDuration: 3m0s

 factor: 2 # the factor in which the duration is increased

Note that there are retries set in this example to tell Argo
CD to try again when an error occurs. You can (and
probably should) also add the following annotation to
resources that are dependent on other resources being
present (like a custom resource of a CRD):

metadata:

 annotations:

 argocd.argoproj.io/sync-options: SkipDryRunOnMissingResource=true

NOTE

In Kubernetes, a dry run is a simulation of an operation, like deploying a
resource, that doesn’t actually change the cluster. It allows users to evaluate
a request through the typical stages without making persistent changes. It’s
important to note that Argo CD will do a “dry run” if the dependent resource
is present.

These two settings, when configured together, will make
Argo CD “keep retrying until success or until the retries are
exhausted” (whichever comes first). In this way, Argo CD
handles deployment orchestration by not handling the
specific details, but instead attempting to apply resources
and relying on the eventual consistency nature of
Kubernetes.

Use Case Setup

Before going through the use cases, we’ll need to set up the
aforementioned prerequisites in order for orchestration to
work properly. This is a one-time setup that not only

enables you to perform the following use cases; they are
also, as stated before, best general practices when using
Argo CD. We will be working out of the root directory of the
Git repository that accompanies this book.

Inspecting Probes

The manifests we will be deploying are already set up with
readiness and liveness probes. You can verify these
configurations by using yq to inspect these resources.

NOTE

You can find more information about yq at the project website.

From the root directory, run the following commands:

To view the liveness probe

$ yq .spec.template.spec.containers.0.livenessProbe \

ch10/apps/golist-api/golist-api-deployment.yaml

To view the readiness probe

$ yq .spec.template.spec.containers.0.readinessProbe \

ch10/apps/golist-api/golist-api-deployment.yaml

You can verify the other deployment manifest by running
the same command against the ch10/apps/golist-
frontend/golist-frontend-deployment.yaml file.

NOTE

Since we are also deploying a Helm chart, you’ll need to run the Helm
template to the ch10/apps/golist-db directory to verify the presence of those
probes.

https://oreil.ly/3oujc

Adding Argo CD Health Checks

As described previously in this chapter, Argo CD
Applications health checks are disabled by default. You will
need to enable the health checks in order to proceed with
the use cases in the upcoming sections. We have added a
convenient patch file to enable this configuration. From the
root directory of the repository, run the following:

$ kubectl patch cm/argocd-cm -n argocd --type=merge --patch-file \

ch10/argocd-cm-patchfile.yaml

You can verify Argo CD has been updated:

$ kubectl get -n argocd cm/argocd-cm -o \

jsonpath='{.data.resource\.customizations\.health\.argoproj\.io_Application}'

NOTE

The escapes on the period characters are necessary, as they’re in the
element name, not hierarchy indicators.

With the probes verified and Argo CD Application health
check in place, you can now start with the first use case.

Use Case: App-of-Apps with Sync

Waves

Originally conceived as a method of bootstrapping Argo
CD, the App-of-Apps pattern is basically an Argo CD
Application that consists of other Argo CD Applications
(since an Argo CD Application is nothing but a Kubernetes
CRD). In Chapter 7, you were introduced to the App-of-
Apps pattern and how it can be used to bootstrap Argo CD,

including how to deploy Argo CD Applications using Argo
CD itself.
Extending beyond just bootstrapping, users found other
advantages of using this pattern thanks to also having
access to other features that Argo CD provides natively
(notably, Argo CD orchestration features, like sync waves
and sync phases). When setting up probes and Argo CD
Application health, you will now have everything you need
to set up Argo CD Application deployment orchestration
using App-of-Apps and sync waves.
Let’s take a look at a use case of deploying a three-tiered
application. We will have one Argo CD Application that
deploys a frontend app, a backend app, and also a
database. We want to have these managed by a “parent”
Argo CD Application, and we want to deploy these in the
following order:

Database

Backend

Frontend

NOTE

As you’re going through examples, you might get some name collisions
(duplicate Application names). You may delete former samples from your
setup or run them on a different Kubernetes cluster.

In order to achieve this architecture, we’ll have to use sync
waves with our App-of-Apps. We first apply the
argocd.argoproj.io/sync-wave annotation to the Argo CD
Application that deploys the “database” application. Taking
a look at the annotations for the

ch10/argocd/applications/golist-db.yaml file, you should see
the annotation set to "1":

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 annotations:

 argocd.argoproj.io/sync-wave: "1"

 name: database

 namespace: argocd

NOTE

Keep in mind that lower numbers get higher priority when working with sync
waves, which include negative numbers.

Since we want the backend to become available afterward,
we’ll annotate that Application with a higher number. In
this case, taking a look at the
ch10/argocd/applications/golist-api.yaml file, note the
annotation value is set to "2":

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 annotations:

 argocd.argoproj.io/sync-wave: "2"

 name: backend

 namespace: argocd

Finally, we can see in the ch10/argocd/applications/golist-
frontend.yaml file that the annotation for the frontend
Application is set with a higher number than the database
and backend so that it comes up last. In our case, it’s
annotated with "3":

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 annotations:

 argocd.argoproj.io/sync-wave: "3"

 name: frontend

 namespace: argocd

The parent Application, being just another Argo CD
Application, will create the resources in the specified order.
Taking a look at the ch10/argocd/applications/​par⁠ent.yaml
file, you’ll see the following:

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: parent

 namespace: argocd

 finalizers:

 - resources-finalizer.argocd.argoproj.io

spec:

 source:

 path: argocd/applications

 repoURL: 'https://github.com/sabre1041/argocd-up-and-running-book'

 targetRevision: main

 destination:

 namespace: argocd

 name: in-cluster

 project: default

 syncPolicy:

 automated:

 prune: true

 selfHeal: true

 retry:

 limit: 5

 backoff:

 duration: 5s

 maxDuration: 3m0s

 factor: 2

 syncOptions:

 - CreateNamespace=true

Once this parent Argo CD Application is applied, Argo CD
will apply the “child” Argo CD Applications in the order it

was annotated with. To start the process, apply the parent
Argo CD Application by running the following command:

$ kubectl apply -n argocd -f \

ch10/argocd/applications/parent.yaml

Walking through the process, you will notice some
elements in the Argo CD UI dashboard.
First, the parent Argo CD Application is created and begins
the sync process, which includes deploying the database
Application (since it’s annotated with a “1”). You can see
this in Figure 10-1.

Figure 10-1. App-of-Apps sync wave 1

Once the database Application is synced and healthy, Argo
CD will apply the backend Application (as it is annotated
with a “2”). You can see this in Figure 10-2.

Figure 10-2. App-of-Apps sync wave 2

Once the backend Application is synced and healthy, Argo
CD will finally apply the frontend Application (as it is
annotated with a “3”). This is represented in Figure 10-3.

Figure 10-3. App-of-Apps sync wave 3

In the end, all three Applications that make up this
workload, plus the parent Application, are synced and
healthy.

NOTE

The parent Application is now your control point of all other Applications.
For example, if you delete the parent Application, all of the children will be
deleted (in our example).

Figure 10-4 should represent the current state in your
environment.

Figure 10-4. App-of-Apps sync wave finished

As you can see, this approach provides a powerful method
of setting up Application dependencies, bootstrapping, and
performing custom Application deployment orchestration,
and it’s currently the recommended way of doing it. It’s
worth reiterating that this is all possible because all

readiness/liveness probes were set up and Argo CD was

configured with the proper Lua health checks.

ApplicationSets

With all the power that Argo CD gives you with Argo CD
Applications and the App-of-Apps pattern, there was still a

need to templatize the creation of Argo CD Applications.
Yes, we can manage Argo CD Application deployments in a
controlled manner. But we still need to create those
Application manifests.
In Chapter 7, we introduced Argo CD ApplicationSets,
which can be seen as an Application “factory.” The sole
purpose of the Argo CD ApplicationSet controller is to
create Argo CD Applications. As you saw in Chapter 7, this
gives us the ability to not only create multiple Applications
at the same time using a single manifest, but it also allows
us to deploy many applications to many destination
clusters.

Progressive Sync

One drawback of ApplicationSets is that it just generates
Applications. There had been no built-in mechanism to
order or have dependencies. That was until ApplicationSets
Progressive Sync was introduced.
The Progressive Sync feature aims to deploy the
Applications in an ApplicationSet in the specified order,
while also taking Application health into consideration
(meaning it won’t sync Applications unless the previous one
is synced and healthy). While using ApplicationSets
Progressive Sync is great, there are a few things to keep in
mind:

Generated Applications will have autosync disabled.

This is an alpha feature and will be subject to
change. This also means that the feature needs to be
explicitly enabled.

If an Application has been in a “pending” state for
more than the allotted progressing timeout (default

300 seconds), the ApplicationSet controller will
mark it as “healthy.”

Even with Progressive Sync enabled, you still need to set
up your readiness/liveness probes and Argo CD Application
health. With all these things in mind, let’s go over the same
example as was described previously, except with the
Progressive Sync feature.

Use Case: Using Progressive Sync

We can have similar behavior of Application dependency
management using ApplicationSet Progressive Sync that
you had with the App-of-Apps use case. The biggest
advantage of using Progressive Sync over App-of-Apps is
that you only need to manage one manifest.
There are other advantages of using Progressive Sync.
There are features of being able to group many
Applications in each deployment phase but also include
things like specifying maxUpdate, which allows for the
deployment of only a percentage of Applications at a time
in each phase. This is helpful in the situation where you
have thousands of applications and want to prevent a
“broadcast storm” of syncs happening.

NOTE

The term broadcast storm here is used generally to indicate many syncs
happening at the same time. It was originally coined as a networking term.

Let’s take a look at the same use case of deploying the
same three-tiered application. This time, we will use an
Argo CD ApplicationSet that uses a Progressive Sync to

https://oreil.ly/iHQET

deploy that frontend app, along with the backend app, and
also that same database we used in the previous use case.
Before anything else, you’ll need to remove the existing
Applications related to the three-tier deployment. This can
be easily accomplished by deleting the parent application:

$ kubectl delete application parent -n argocd

NOTE

Since the parent Application controls the other Applications (via a finalizer),
it will also delete the children Applications.

Next, you need to explicitly enable Progressive Sync in
Argo CD. A patch file is included to simplify this process:

$ kubectl patch cm/argocd-cmd-params-cm -n argocd --type=json \

--patch-file ch10/argocd-cmd-params-cm-patchfile.yaml

Next, the ApplicationSet controller deployment must be
restarted to pick up the updated configuration:

$ kubectl rollout restart deploy/argocd-applicationset-controller -n argocd

Any ApplicationSet can use Progressive Sync. The only
configuration difference is the target labels that will be
added and a new section under .spec.strategy in the
ApplicationSet YAML. If you take a look at the
ch10/argocd/appsets/progressivesync.yaml file, you’ll see a List
generator used with the following strategy:

spec:

 # ...omitted for brevity...

 strategy:

 type: RollingSync

 rollingSync:

 steps:

 - matchExpressions:

 - key: golist-component

 operator: In

 values:

 - database

 - matchExpressions:

 - key: golist-component

 operator: In

 values:

 - backend

 - matchExpressions:

 - key: golist-component

 operator: In

 values:

 - frontend

Take note of the .spec.strategy section as it includes
“steps.” This is how ordering is accomplished, similar to the
App-of-Apps with sync waves method. This section allows
you to group Applications by the labels present on the
generated Application resources. When the ApplicationSet
changes, the changes will be propagated to each group of
Application resources sequentially. Progressive Sync uses
the familiar matchExpressions that are found in various
standard Kubernetes resources. You can potentially group
together hundreds of Applications in each “step.”
The next section to notice is the
.spec.template.metadata.labels section in the same
ApplicationSet manifest:

spec:

 # ...omitted for brevity...

 template:

 metadata:

 name: '{{srv}}'

 labels:

 golist-component: '{{srv}}'

This section will apply the label to the corresponding Argo
CD Application that this ApplicationSet creates. Then the
Progressive Sync operation will use these labels to
determine which Argo CD Application gets synced in each
step.
To start the process, apply the ApplicationSet in the
progressivesync.yaml file:

$ kubectl apply -n argocd -f ch10/argocd/appsets/progressivesync.yaml

Once applied, it will create all three of the Argo CD
Applications at once (in contrast to App-of-Apps pattern
where they are created as they are synced); but they will
remain “missing/out of sync.” Then it will progress to
syncing the first database Application. You can see this in
the Argo CD UI, as depicted by Figure 10-5.

Figure 10-5. Progressive Sync database

Once the database is synced, the backend Application will
start syncing. A similar representation appears in
Figure 10-6.
When the backend Application becomes synced, the
frontend Application will begin to sync. A state similar to
Figure 10-7 will be present in the Argo CD UI.

In the end, it should appear similar to that of the App-of-
Apps method, except there is no parent Application since
we are using an ApplicationSet to deploy this workload.
You will see all Applications synced and healthy in the Argo
CD UI, as shown in Figure 10-8.

Figure 10-6. Progressive Sync backend

Figure 10-7. Progressive Sync frontend

Figure 10-8. Progressive Sync finished

The end result is the same, except that with
ProgressiveSync, there is only one manifest to create and
manage.
It’s important to note that it’s not App-of-Apps versus
Progressive Sync. There are some situations where you
could use both or a combination of both, for example “App-
of-ApplicationSets”—where you use a parent Argo CD
Application to bootstrap your ApplicationSets.

Summary

In this chapter, we delved into the complexities and
strategies of managing large-scale deployments with Argo
CD. We reviewed the foundational concept of the
Application Custom Resource Definition (CRD) object,
introduced in Chapter 4, which helps in logically grouping
Kubernetes manifests. Also in this chapter, we highlighted
the challenges that arise due to the autonomous nature of
Argo CD Applications, especially in microservices
architectures where sequential deployment dependencies
exist.
We provided an in-depth look into various deployment
patterns to tackle these challenges, such as the App-of-
Apps with sync waves and ApplicationSets with Progressive
Sync. These patterns are designed to manage dependencies
and orchestrate the deployment of multiple Argo CD
Applications effectively. Additionally, we also went through
the importance of readiness and liveness probes, Argo CD
Application health checks, and resource health checks as
best practices to ensure the reliable and predictable
deployment of Applications. All of these concepts came
together to support the deployment of a multitier
application using these advanced patterns, demonstrating

how to set up and manage these dependencies, and
highlighting the nuances and benefits of each method in a
scalable deployment environment.

Chapter 11. Extending

Argo CD

Thus far, we have described many of the features that are
included within Argo CD to not only manage resources
effectively using GitOps patterns in Kubernetes, but also to
provide a rich set of options for end users to interact with
the platform. By offering a way to integrate tools and
frameworks common to Kubernetes, complex workflows
can be developed to create a robust management strategy
for infrastructure and applications. However, even with all
of the supported set of capabilities, there may be a need to
integrate an additional set of components that are not
natively included within Argo CD or to customize the
platform itself to better serve the needs of end users.
In this chapter, we will introduce several different
mechanisms that can be used to extend the default
configuration of Argo CD, including the use of a pluggable
framework to incorporate additional tools to support how
Kubernetes resources are created. These options give end
users the power to take Argo CD to the next level.

Config Management Plugins

Kubernetes resources in Argo CD can be created using a
variety of methods. They may be declared using standalone
manifests or incorporate one of the included set of config
management tools, such as Helm, Kustomize, or Jsonnet.
While these tools represent some of the most common
options available for managing Kubernetes resources, there

became a need to provide a facility for which additional
options were available to customize the generation of
Kubernetes resources.
Kubernetes itself faced a similar challenge early on where
it only provided a finite list of resource types and APIs for
users and systems to interact with. This limitation could
have reduced the impact that Kubernetes would ultimately
have on the IT industry. However, it was the introduction of
Custom Resource Definitions (CRDs) that enabled the
ability to extend the types of resources served by
Kubernetes and unleash an entirely new way to work with
the platform. Argo CD provides its own solution to the
configuration management tool challenge through the use
of config management plugins, which offers a flexible
method for enabling additional options for facilitating the
creation of Kubernetes resources.
If you recall, the repo server is the component responsible
for building Kubernetes resources using one of the
supported configuration management tools. For alternate
tools to be used, it is within this location where tasks need
to be executed.
A config management plugin consists of two parts:

A ConfigManagementPlugin manifest describing how and
when the plugin should be used

Tooling to enable the execution of the plugin

The use of alternate tools will typically require additional
dependencies, such as binaries associated with the tool and
scripts containing the logic employed by the plugin. While
the repo server image could be extended to include these
custom assets, the preferred approach is to package any of
the necessary assets into a separate container and run this

container alongside the repo server. This model is known
as the sidecar pattern in Kubernetes, as it has a number of
benefits:

Avoids conflicts between the plugin and the repo
server

Eliminates the need to manage the lifecycle of the
repo server

Owns the entire lifecycle plugin and its components

With an understanding of the high-level set of components
involved when integrating config management plugins, let’s
explore each of these items in depth and how they can be
used to implement a plugin within Argo CD.

The ConfigManagementPlugin Manifest

The ConfigManagementPlugin manifest provides instructions to
the repo server so that it understands when the plugin
should be invoked and how it should be invoked. The
following contains the structure of the manifest:

apiVersion: argoproj.io/v1alpha1

kind: ConfigManagementPlugin

metadata:

 # The name of the plugin must be unique within a given Argo CD instance.

 name: my-plugin

spec:

 # The version of your plugin. Optional. If specified, the Application's

 # spec.source.plugin.name field must be <plugin name>-<plugin version>.

 version: v1.0

 # The init command runs in the Application source directory at the beginning

of each

 # manifest generation. The init command can output anything.

 # A non-zero status code will fail manifest generation.

 init:

 # Init always happens immediately before generate, but its output

 # is not treated as manifests.

 # This is a good place to, for example, download chart dependencies.

 command: [sh]

 args: [-c, 'echo "Initializing..."']

 # The generate command runs in the Application source directory each time

manifests

 # are generated. Standard output must be ONLY valid Kubernetes Objects in

either

 # YAML or JSON. A non-zero exit code will fail manifest generation. To write

log

 # messages from the command, write them to stderr, it will always be

displayed.

 # Error output will be sent to the UI, so avoid printing sensitive

information

 # (such as secrets).

 generate:

 command: [sh, -c]

 args:

 - |

 echo "{\"kind\": \"ConfigMap\", \"apiVersion\": \"v1\",

 \"metadata\": { \"name\": \"$ARGOCD_APP_NAME\",

 \"namespace\": \"$ARGOCD_APP_NAMESPACE\",

 \"annotations\": {\"Foo\": \"$ARGOCD_ENV_FOO\",

 \"KubeVersion\": \"$KUBE_VERSION\",

 \"KubeApiVersion\": \"$KUBE_API_VERSIONS\",\"Bar\": \"baz\"}}}"

 # The discovery config is applied to a repository. If every configured

discovery

 # tool matches, then the plugin may be used to generate manifests for

Applications

 # using the repository. If the discovery config is omitted then the plugin

will

 # not match any application but can still be invoked explicitly by

specifying the

 # plugin name in the app spec. Only one of fileName, find.glob, or

find.command

 # should be specified. If multiple are specified then only the first (in

that

 # order) is evaluated.

 discover:

 # fileName is a glob pattern (https://pkg.go.dev/path/filepath#Glob)

that is

 # applied to the Application's source directory. If there is a match,

this plugin

 # may be used for the Application.

 fileName: "./subdir/s*.yaml"

 find:

 # This does the same thing as fileName, but it supports double-start

(nested

 # directory) glob patterns.

 glob: "**/Chart.yaml"

g / y

 # The find command runs in the repository's root directory. To match, it

must

 # exit with status code 0 _and_ produce non-empty output to standard

out.

 command: [sh, -c, find . -name env.yaml]

 # The parameters config describes what parameters the UI should display for

an

 # Application. It is up to the user to actually set parameters in the

Application

 # manifest (in spec.source.plugin.parameters). The announcements _only_

inform the

 # "Parameters" tab in the App Details page of the UI.

 parameters:

 # Static parameter announcements are sent to the UI for _all_ Applications

handled

 # by this plugin. Think of the `string`, `array`, and `map` values set

here as

 # "defaults". It is up to the plugin author to make sure that these

default values

 # actually reflect the plugin's behavior if the user doesn't explicitly

set

 # different values for those parameters.

 static:

 - name: string-param

 title: Description of the string param

 tooltip: Tooltip shown when the user hovers over field in the UI

 # If this field is set, the UI will indicate to the user that they

must set the

 # value.

 required: false

 # itemType tells the UI how to present the parameter's value (or, for

arrays

 # and maps, values). Default is "string". Examples of other types

which may be

 # supported in the future are "boolean" or "number". Even if the

itemType is not

 # "string", the parameter value from the Application spec will be sent

to the

 # plugin as a string. It's up to the plugin to do the appropriate

conversion.

 itemType: ""

 # collectionType describes what type of value this parameter accepts

(string,

 # array, or map) and allows the UI to present a form to match that

type. Default

 # is "string". This field must be present for non-string types. It

will not be

 # inferred from the presence of an `array` or `map` field.

p y p

 collectionType: ""

 # This field communicates the parameter's default value to the UI.

Setting this

 # field is optional.

 string: default-string-value

 # All the previous fields besides "string" apply to both the array and

map type

 # parameter announcements.

 - name: array-param

 # This field communicates the parameter's default value to the UI.

Setting this

 # field is optional

 array: [default, items]

 collectionType: array

 - name: map-param

 # This field communicates the parameter's default value to the UI.

Setting this

 # field is optional.

 map:

 some: value

 collectionType: map

 # Dynamic parameter announcements are announcements specific to an

Application handled

 # by this plugin. For example, the values for a Helm chart's values.yaml

file could

 # be sent as parameter announcements.

 dynamic:

 # The command is run in an Application's source directory. Standard

output must

 # be JSON matching the schema of the static parameter announcements

list.

 command: [echo, '[{"name": "example-param", "string": "default-string-

value"}]']

 # If set to `true` then the plugin receives repository files with original

file

 # mode. Dangerous since the repository might have executable files. Set to

true only

 # if you trust the CMP plugin authors.

 preserveFileMode: false

As depicted, there are a wide range of options that a
ConfigManagementPlugin manifest supports. However, there
are only a few properties that you need to be concerned
with whenever developing and using a config management

plugin, as they dictate how the plugin will operate. A
description of each of these key properties are listed here:

init

This is an optional parameter that performs any preparation
steps that the plugin requires, such as downloading
dependencies.

generate

This performs the primary function of the plugin. This
action runs within the directory associated with the Argo CD
Application and can be implemented in a variety of ways,
including executing a script, binary, or printing arbitrary
content. The one requirement is that the only output that is
produced from this stage be a set of valid YAML- or JSON-
formatted Kubernetes manifests.

discover

This is a set of rules that determines whether the Application
is applicable for execution. Common examples include
searching for the presence of a file in the application source
or executing a command to perform more complex
capabilities. The exit code determines whether the plugin is
applicable for the content.

They each are located directly underneath the .spec
property and work hand in hand to determine the
applicability of a plugin for the source Application and the
steps necessary to produce Kubernetes manifests.

To determine whether a plugin should be executed for a
given Application, two methods are available. First, the
discover property within the ConfigManagementPlugin can
either match the name of a file, or file based on a glob
pattern in the content source, or return a 0 exit code as a
result of the execution of a command. Otherwise, the name
of the plugin can be explicitly defined on the Application
manifest as shown here:

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: guestbook

spec:

 source:

 plugin:

 name: my-plugin

In most cases, you will want to both abstract when a plugin
is executed as well as the need for the end user to define
the plugin within their Application. A common example for
determining whether a plugin should be executed using the
auto-discovery capability is the presence of a particular file
within the application source—such as a file called
Chart.yaml for a Helm-based application. Here is an example
of how the discover property can be configured to support
this use case using the fileName option:

discover:

 fileName: "Chart.yaml"

Once a match has been made using any of the methods
previously described, the next step is to perform any
initialization steps that are required by the plugin. This
step is optional and only executed when the init property
has been defined. When working with Helm-based

applications within the context of a config management
plugin, a common initialization task may involve the need to
manage any of the dependencies that the chart relies on.
This way, when the chart is processed within the main logic
as defined in the generate property, all of the necessary
resources will be available. The following is an example of
how Helm dependencies can be handled within the init
property:

init:

 command: ["/bin/sh", "-c"]

 args: ["helm dependency build || true"]

Finally, after defining any of the key optional properties,
the primary plugin logic as defined by the generate property
can be specified. Instead of providing a simple code
example like we demonstrated previously for the init and
discovery properties, let’s use this as an opportunity to look
into how a config management plugin could be used and
implemented in practice.
Kustomize and Helm on their own provide a powerful set of
capabilities for templating Kubernetes manifests. But why
choose one tool over the other when you can utilize both at
the same time? Kustomize includes support for inflating
Helm charts, and the two tools, working hand in hand,
provide a powerful combination that provides a number of
benefits, particularly when working with Argo CD. For
example, a common challenge when consuming Helm
charts from the community is that customizations are
limited to only the options that the chart creator provides.
When used with Kustomize, the rendered charts can be
augmented using any of the Kustomize features, including
patching and transformation.

The challenge, where a config management plugin can be
beneficial, is that an additional flag (--enable-helm) must be
provided to the underlying kustomize command to enable
support for the Helm inflator. Argo CD does provide
support for customizing the Kustomize build options.
However, these configurations are enabled globally within
the argo-cd ConfigMap, and there may be either a desire to
avoid setting configurations globally or the inability to
modify Argo CD configurations at a global level due to
access limitations.
To enable the Helm inflator feature within the context of a
config management plugin, the following can be specified
in the generate property:

generate:

 command: ["/bin/sh", "-c"]

 args: ["kustomize build --enable-helm"]

Registering the Plugin

With the generate property now defined, we have all the
necessary steps to be able to utilize a ConfigManagementPlugin
manifest. Now, while this resource may appear similar to a
Kubernetes custom resource, it is just a configuration file
that Argo CD understands. It is included within the plugin
sidecar at a known location so that it can be discovered by
the Argo CD server. The delivery of the file can be achieved
using one of two methods:

Inclusion within the image

Injected at runtime as a ConfigMap

The injection method is preferred, as the values contained
within the configuration file may differ per environment,

which avoids having to build a new plugin image for each
variation. This approach also aligns with the principles of
the twelve-factor app, which emphasizes externalizing
configurations within the operating environment—and in
Kubernetes, this implies storage as a ConfigMap or Secret.
A ConfigMap containing the embedded
ConfigManagementPlugin resource can be found in the
kustomize-helm-plugin.yml file within the
ch11/configmanagementplugins directory of the repository
accompanying this book and also shown here:

apiVersion: v1

kind: ConfigMap

metadata:

 name: kustomize-helm-plugin

 namespace: argocd

data:

 plugin.yaml: |

 apiVersion: argoproj.io/v1alpha1

 kind: ConfigManagementPlugin

 metadata:

 name: kustomize-helm

 spec:

 generate:

 command: ["/bin/sh", "-c"]

 args: ["kustomize build --enable-helm"]

Now, apply the ConfigMap to the argocd namespace using
the following command from within the project repository
directory:

$ kubectl apply -f ch11/configmanagementplugins/kustomize-helm-plugin.yml

Next, the plugin sidecar must be added to the deployment
of the Repository Server. The sidecar is represented by the
following configuration:

https://12factor.net/

containers:

 - name: kustomize-helm

 securityContext:

 runAsNonRoot: true

 runAsUser: 999 # User ID for the Argo CD service account

 image: registry.k8s.io/kustomize/kustomize:v4.5.7

 imagePullPolicy: IfNotPresent # Only pull image if it’s not there

 command: [/var/run/argocd/argocd-cmp-server]

 volumeMounts:

 - mountPath: /var/run/argocd

 name: var-files

 - mountPath: /home/argocd/cmp-server/plugins

 name: plugins

 - mountPath: /home/argocd/cmp-server/config/plugin.yaml

 subPath: plugin.yaml

 name: kustomize-helm-plugin

 - mountPath: /tmp

 name: cmp-tmp

volumes:

 - name: kustomize-helm-plugin

 configMap:

 name: kustomize-helm-plugin

 - emptyDir: {}

 name: cmp-tmp

While the definition of a config management plugin sidecar
can vary between each implementation, particularly as it
relates to the associated image, there are certainly
properties where their values must align to a certain set of
rules, as noted here:

The sidecar must run as user 999 in order for the
sidecar to access the files from the Application.

The plugin.yaml file must be located in the
/home/argocd/cmp-server/config directory.

The Repository Server Deployment includes a series of
volumes that should be mounted into the sidecar,
including /var/run/argocd, which contains the argocd-
cmp-server binary and /home/argocd/cmp-server/plugins.

A patch file called argocd-repo-server-kustomize-helm-

plugin-patch.yaml containing the sidecar definition is also
included in the ch11/configmanagementplugins directory of
the repository accompanying this book.

Patch the repo-server Deployment by executing the following
command:

kubectl -n argocd patch deployments/argo-cd-argocd-repo-server \

--patch-file ch11/configmanagementplugins/argocd-repo-server-kustomize-helm-

plugin-patch.yaml

With the patch applied, confirm that the updated repo-
server Deployment now includes the kustomize-helm-plugin

sidecar for a total of two running containers in the pod:

$ kubectl get pods -n argocd -l=app.kubernetes.io/component=repo-server

NAME READY STATUS RESTARTS AGE

argo-cd-argocd-repo-server-9d947b457-pxs8l 2/2 Running 0 121m

Included in the ch11/configmanagementplugins directory
are an additional set of assets that will be used to
demonstrate the use of the Helm inflator (to extract the
raw Kubernetes manifests) capability of Kustomize with an
Argo CD config management plugin. First, the charts
directory contains a simple Helm chart called kustomize-

helm which produces a ConfigMap when rendered. And, as
with any Kustomize application, there is also a
Kustomization (kustomization.yaml) file present, which
invokes the Helm inflator using a set of properties prefixed
with helm:

apiVersion: kustomize.config.k8s.io/v1beta1

kind: Kustomization

helmCharts:

 - name: kustomize-helm

 version: 0.1.0

 releaseName: kustomize-helm

helmGlobals:

 chartHome: charts

The helmCharts property within the Kustomization file
includes the majority of the configurations associated with
the Helm inflator, such as the name of the chart and the
version. Since the desired Helm chart is not in a location
relative to the Kustomization file, the chartHome property
within the helmGlobals property specifies where Helm charts
should be sourced from. If a Helm chart is not available
locally, it can originate from either a remote repository or
an OCI registry.
To have Argo CD deploy the Kustomize-based application
within the Kubernetes cluster, create an Argo CD
Application called kustomize-helm that is defined in a file
called kustomize-helm-app.yaml within the
ch11/configmanagementplugins directory:

kubectl apply -f ch11/configmanagementplugins/kustomize-helm-app.yaml

Using either the Argo CD CLI or the UI, check on the status
of the newly created Application.
Notice that the kustomize-helm Application is reporting an
error with a message similar to the following:

Failed to load target state: failed to generate manifest for source 1 of 1:

rpc error: ...

The error message indicates that it is unable to render the
Kustomize application, as even though the Helm inflator

capability is being used, it is not being enabled by including
the --enable-helm flag.
Recall the two ways that an Argo CD config management
plugin can be triggered: either through dynamic activation
or specified explicitly within the Application itself. Since
neither option was used, the error being displayed is
expected as the Helm inflator feature in Kustomize is not
enabled by default in Argo CD.
To enable the config management plugin that we
configured previously, update the kustomize-helm
Application to specify the name of the plugin within the
.spec.source property using kubectl, the Argo CD CLI, or
the Argo CD UI:

spec:

 source:

 plugin:

 name: kustomize-helm

Once the configuration of the Application has been
updated, the previously seen error will be resolved and the
Application will synchronize successfully, as shown in
Figure 11-1.

Figure 11-1. The kustomize-helm application in the Argo CD UI

If you investigate the contents of the kustomize-helm
ConfigMap that was created from the Application, two
properties are present:

apiVersion: v1

kind: ConfigMap

metadata:

 labels:

 app.kubernetes.io/instance: kustomize-helm

 app.kubernetes.io/managed-by: Helm

 app.kubernetes.io/name: kustomize-helm

 argocd.argoproj.io/instance: kustomize-helm

 helm.sh/chart: kustomize-helm-0.1.0

 name: kustomize-helm

 namespace: kustomize-helm

data:

 baseValue: Base Value

 specialValue: Added by Kustomize

The baseValue property is included by default from the
kustomize-helm Helm chart. However, the specialValue
property was added dynamically as a patch by Kustomize,
as defined in the kustomization.yaml:

patches:

- patch: |-

 apiVersion: v1

 kind: ConfigMap

 metadata:

 name: kustomize-helm

 data:

 specialValue: "Added by Kustomize"

The combination of Helm and Kustomize, which is enabled
as an opt-in capacity, illustrates the benefits that are
provided from a config management plugin.

Customizing Plugin Execution

The execution of config management plugins can be
customized at an Application level to curate their operation.
They provide the end user both the ability to specify
additional configurations at an Application level and also
awareness that certain options might be available to them.
Two approaches of configuration are available:

Environment variables

Parameters

Both of these methods are then exposed to plugins, and it is
the responsibility of the plugin author to handle the inputs
accordingly.

Environment Variables

Environment variables are the primary method from which
config management plugins glean information about the
operating environment and can originate from a variety of
system and user-defined sources. Much of the same
information is also made available and utilized by the
standard build tools, like Helm and Kustomize, and include
the following:

Operating system-level environment variables from
within the plugin sidecar

Build environment variables, including
ARGOCD_APP_NAME, ARGOCD_APP_NAMESPACE, and
KUBE_VERSION; full list found within the Argo CD
documentation

In addition to the system-defined environment variables,
end users can explicitly specify their own set of

https://oreil.ly/6D6aK

environment variables within the env property of the
.spec.source.plugin field:

spec:

 source:

 plugin:

 env:

 - name: FOO

 value: bar

User-defined environment variables are prefixed with
ARGOCD_ENV_. So, the value of the user-defined environment
variable here would be accessible within the plugin in the
environment variable ARGOCD_ENV_FOO.

Parameters

Another method for customizing the execution of a config
management plugin is through the use of parameters.
Parameters are also defined in the .spec.source.plugin field
of an Application in the parameters property, and they have
several advantages when compared to environment
variables:

Support multiple data types aside from strings
(string, array, or map are the supported data types)

“Announced” within the Parameters tab of the
Application within the UI

“Announced” parameters either statically or
dynamically defined within the ConfigManagementPlugin
manifest

Parameters are also exposed to plugins as environment
variables and available in two formats:

Individually with the prefix PARAM_. A parameter with
the name example-param would be exposed as the
environment variable PARAM_EXAMPLE_PARAM.

A single ARGOCD_APP_PARAMETERS environment variable
containing the content of the Application
.spec.source.plugin field in JSON format.

Complex parameter types, such as arrays or maps, have a
slightly different environment variable name format. For
arrays, the environment variable is suffixed with the index
(PARAM_NAME_X, where X is the index) of the parameter while
maps are suffixed with the key associated with the
parameter (foo.bar becomes PARAM_NAME_FOO_BAR).
Aside from supporting more complex data types, another
strength of plugin parameters is that they can be
“announced” within the Argo CD UI, giving end users the
awareness of specific parameters as well as the ability for
parameters to be defined. The following schema defines
how parameters can be exposed (announced):

Name of the parameter

name: string-param

Description of the parameter

title: "Description goes here"

Tooltip shown when the user hovers over the field in the user interface

tooltip: "A helpful tip"

Indicator for whether a parameter is required

required: false

Indicator for how the user interface should present the entry field

(defaults to "string")

itemType: ""

Data type for non-string values (map or array)

collectionType: ""

Optional default value

string: default-string-value

Parameters that are consistent (static) for each execution
of a particular plugin are announced in the
.spec.parameters.static property of the ConfigManagement​
Plu⁠gin.
To illustrate how parameters are presented in the Argo CD
UI, define a parameter called my-static-param within the
kustomize-helm-plugin ConfigMap containing the
ConfigManagementPlugin as shown here:

spec:

 parameters:

 static:

 - name: my-static-param

 title: Example static parameter

Once applied, restart the repo-server pod to enable Argo
CD to pick up on changes:

kubectl delete pod -n argocd -l=app.kubernetes.io/name=argocd-repo-server

With the repo-server restarted, navigate to the Argo CD UI
and select the kustomize-helm Application. Click on the
Details button and then navigate to the Parameters tab,
which will display any of the configured parameters, as
seen in Figure 11-2.

Figure 11-2. Parameter exposed in the Argo CD UI

Notice that the my-static-param parameter with the title
“Example static parameter,” as configured in the
kustomize-helm-plugin ConfigMap, is now available on the
page as a field to specify.
It is important to note that even though parameters are
exposed to the UI, they do not become defined as
environment variables for use by config management
plugins until their values are specified either in the UI or
declaratively in the Application manifest.
Alternatively, instead of explicitly specifying parameters
within the ConfigManagementPlugin, they can be sourced
dynamically from the content within the Application source
code. The use of dynamic parameters offloads responsibility
for defining plugin parameters that are exposed within the
Argo CD UI from the Argo CD administrator as well as
enabling parameters to be defined based on the content
source associated with each Application. Dynamic

parameters are defined within the .spec.parameters.dynamic
property of the ConfigManagementPlugin which specifies a
command that should be executed within the Application
source, which generates a structure representing the
structure of static parameters in JSON format.

User Interface Customization

One of the primary reasons why Argo CD has gained such
popularity in the Kubernetes community is due to its rich
UI. Simplifying the steps that a user needs to take to
become productive, as well as presenting an easy-to-
understand visualization of the current state of GitOps-
based deployments and operations, accelerates adoption
and management concerns. In order to enable further
productivity with the UI, Argo CD provides several injection
points for end users to customize the look and feel, as well
as to extend the baseline feature set. This section will
highlight several of the available methods.

Banner Notifications

Proactive communication is one of the methods that can be
used to enhance the overall experience for end users. One
way that Argo CD supports this goal is through the use of
banner notifications. When enabled, these messages,
defined at a global level by Argo CD administrators, allow
for important information to be presented to end users,
such as upcoming maintenance periods or new features
that are available on the platform. This feature is enabled
by setting the ui.bannercontent property of the argocd-cm

ConfigMap with the desired content. Additional options, such
as the location of where the banner should appear, are set

by specifying the ui.banner​posi⁠tion to be either top or
bottom, as well as whether the banner should be
permanently displayed using the ui.bannerpermanent
property. Finally, the text provided in the ui.bannercontent
property can also include a hyperlink to another location,
such as a maintenance page, when notifying users of
upcoming changes to the environment. This option is set by
specifying the ui.bannerurl property.
Figure 11-3 illustrates how a banner notification appears
within the Argo CD UI.

Figure 11-3. Notification banner displayed in the Argo CD UI

Custom Styles

Integral to any user experience is how content is presented,
and in modern web applications, the look and feel is driven
primarily by Cascading Style Sheets (CSS). These
resources are included as part of the argo-ui project, and

https://github.com/argoproj/argo-ui

the Argo CD UI leverages many of these elements when
presenting content to the end user.
As Argo CD usage continues to expand to different
environments and in enterprise organizations, there may be
a desire to customize how some of the elements are
presented. The Argo CD UI supports including custom CSS
content in order to supplement the baseline set of content
provided by the argo-ui project. Examples of common
customizations include replacing the Argo CD logo with a
custom logo or setting the background of certain
components to represent the operating environment (e.g.,
development, staging, production) that Argo CD is
managing.
Custom stylesheets can be applied either by specifying the
location of resources from a remote URL or from a location
within the argocd-server container using the ui.cssurl
property of the argocd-cm ConfigMap. For example, to
reference an externally hosted CSS file from a remote
resource, set the ui.cssurl property using the following
format:

ui.cssurl: "https://www.example.com/my-styles.css"

One of the common uses for customizing the Argo CD UI,
as described previously, is to change background elements
to represent the environment that Argo CD is managing.
This small enhancement gives end users an extra level of
assurance, particularly when multiple Argo CD instances
have been deployed.

The argocd-server deployment that was installed using the
Argo CD Helm chart includes an optional volume mount
leveraging a ConfigMap called argocd-styles-cm containing

custom CSS styles to the location /shared/app/custom within
the container. This ConfigMap is not included in the set of
resources when Argo CD is deployed, and since the volume
is marked as optional, the container can start without any
issue. If an alternate installation method was chosen and
the volume for setting up mounting custom styles to the
Argo CD server container was not configured, a volume and
associated volumeMount can be applied to the argocd-server
Deployment:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: argocd-server

 ...

spec:

 template:

 ...

 spec:

 containers:

 - command:

 ...

 volumeMounts:

 ...

 - mountPath: /shared/app/custom

 name: styles

 ...

 volumes:

 ...

 - configMap:

 name: argocd-styles-cm

 name: styles

To implement the use case for changing the background
element of the Argo CD UI, we can embed the custom CSS
content within the argocd-styles-cm ConfigMap to achieve
the desired goal.
The following CSS properties can be used to update the top
bar of the Argo CD UI to be the color red, potentially

indicating that the Argo CD instance represents a
production environment:

div.columns.small-9.top-bar__left-side {

 background: #fefefe;

}

div.columns.top-bar__left-side,

div.top-bar__title.text-truncate.top-bar__right-side {

 background: #EE0000;

 color: #fff;

}

.top-bar__breadcrumbs {

 color: #fff !important;

}

.top-bar__title {

 color: #fff !important;

}

The argocd-styles-cm.yaml file within the ch11/ui directory of
the project repository contains the updated ConfigMap with
the CSS classes previously illustrated already included.
Apply the changes to the ConfigMap by running the
following command from within the project directory:

kubectl apply -f ch11/ui/argocd-styles-cm.yaml

Restart the argocd-server pod so that the changes to the
ConfigMap can be picked up:

kubectl delete pod -n argocd -l=app.kubernetes.io/component=server

Once the pod is running and ready, reload the UI. Notice
that the toolbar is now red, confirming that the changes
specified are being used, as shown in Figure 11-4.

Figure 11-4. Custom toolbar color applied within the Argo CD UI

While modifying the toolbar is just a minor change, it
illustrates the potential options available for customizing
the style of the Argo CD UI.

UI Extensions

Not only can the look and feel of the Argo CD UI be
customized, but entirely new elements can be added
through the use of UI extensions. Since the Argo CD UI is
React based, extensions are delivered as React components
within JavaScript files matching the pattern extensions*.js
from within the /tmp/extensions directory of the argocd-
server pod.
Three types of UI extensions are available:

https://react.dev/

Resource tab extensions

Provides an additional tab within the sliding panel on the
Argo CD Application details page

System-level extensions

Adds new items to the sidebar that displays a new page with
content when selected

Application status panel extensions

Adds new items to the status panel of an Application

Extensions are registered using the exposed extensions API
global variable. Each extension type provides its own
registration method along with a series of method
parameters. For example, to register a system-level
extension, the following method is used:

registerSystemLevelExtension(component: ExtensionComponent,

 title: string, options: {icon?: string})

With a basic understanding of Argo CD UI extensions,
including the types that can be defined, let’s walk through
the steps it takes to create and implement a system-level
extension.
A system-level extension, once again, exposes a link on the
sidebar to a dedicated page with content. The following is
the JavaScript that is needed to create a minimal extension:

((window) => {

 const component = () => {

 return React.createElement(

 "div",

 { style: { padding: "10px" } },

 "Argo CD Up and Running"

);

 };

 window.extensionsAPI.registerSystemLevelExtension(

 component,

 "Argo CD Book",

 "/argocd-book",

 "fa-book"

);

})(window);

When added to Argo CD, the UI will contain a new link
called Argo CD Book with a book icon (using a book icon
from the content library https://fontawesome.com) that
presents a page (component) with a simple line of text.
Notice how the extension is registered to Argo using the
registerSystemLevelExtension method of the extensionsAPI.
There are two methods that UI extensions are typically
delivered to the argocd-server pod:

Mounted as a volume

Loaded dynamically using the Argo CD Extension
Installer Project

In our case, we will use the first strategy and inject the
extension within a ConfigMap as a volume. The ConfigMap
containing the extension can be found in a file called ui-
extensions.yaml within the ch11/ui directory of the project
repository.
Create the ConfigMap by running the following command
from the project repository directory:

kubectl apply -f ch11/ui/ui-extensions.yaml

Next, update the argocd-server deployment with the
contents of the argo-cd-server-ui-extensions.yaml file within

https://fontawesome.com/
https://oreil.ly/1VJgx

the ch11/ui directory that will include the ui-extensions

ConfigMap that will be mounted within the /tmp/extensions

directory of the container by executing the following
command:

kubectl apply -f ch11/ui/argo-cd-argocd-server.yaml --server-side=true

Wait until the server pod has restarted and becomes ready.
Navigate to the UI and verify that the new link exposed by
the extension is present on the sidebar, as shown in
Figure 11-5.
Clicking on the Argo CD Book link will present the minimal
amount of content that was provided in the extension, but
can easily be expanded upon as desired.
While this walk-through provided a glimpse into the power
provided by Argo CD UI extensions, more fully featured
extensions are available. One such example from the Argo
Labs project is the ArgoCD Extension Metrics, which
exposes Prometheus metrics on the Resources tab of the
UI. It is projects, like Argo CD Extension Metrics, that
illustrate just how extensible Argo CD UI has become.

https://oreil.ly/qXlZy

Figure 11-5. System-level extension within the Argo CD UI

Summary

In this chapter, we covered some of the ways that the base
capabilities provided by Argo CD can be extended by end
users. We first explored how config management plugins
enable complete control for how manifests are rendered by
Argo CD, including how they are configured using a config
management plugin and implemented as a sidecar to the
Argo CD Repository Server. Then, we looked at the Argo
CD UI and how the look and feel can be customized
through the use of banner notifications and custom CSS
styles. Finally, we saw how UI extensions allow end users
to add elements, including custom components, at the
resource, system, or application status level, to extend the
baseline set of capabilities that the Argo CD UI provides.

Chapter 12. Integrating CI

with Argo CD

Continuous integration/continuous delivery (CI/CD) have
long been foundational practices for efficiently delivering
applications to various environments. Over the years, these
methodologies have shaped the development landscape,
giving rise to a wide array of tools and frameworks, with
Jenkins being a notable example. However, as CI/CD
practices have evolved, they have often become conflated,
leading many users to merge CI/CD into a single,
indistinguishable process.
This produces an issue with GitOps and, by extension, Argo
CD.
CI is a synchronous process with a finite runtime, typically
triggered by events like commits to a repository or branch,
making it ideal for builds, tests, and related pipelines. In
contrast, GitOps (which focuses on CD) operates
asynchronously. Tools like Argo CD remain independent of
CI activities, focusing solely on the declared source of truth
(e.g., Git or Helm) and acting only when changes to the
desired state are detected.
In this chapter, we will focus on how to best integrate Argo
CD with a CI system to effectively make use of the strength
of each process.

Reconciliation Response Time

Argo CD adheres to OpenGitOps’ third principle, “Pulled
automatically,” by leveraging a reconciliation loop to
continuously monitor and synchronize with the source of
truth (in this chapter, Git will be the focus). This approach
operates independently of event-driven mechanisms, such
as webhook-triggered deployments. By default, Argo CD
relies exclusively on the reconciliation loop to detect
changes in the source of truth.
However, webhooks provide a mechanism for “on-demand”
synchronization, enabling changes to be applied
immediately without waiting for the next reconciliation
cycle. To support this use case, Argo CD allows webhooks
to work alongside the reconciliation loop, offering seamless
integration with Git workflows and enabling prompt
synchronization when necessary.

Modifying Reconciliation

By default, Argo CD’s reconciliation loop that is used to
check for updates within the source is set to 180 seconds (3
minutes). This value can be adjusted by modifying the
argocd-cm ConfigMap in the argocd namespace. You can add
(or update if it’s already there) the timeout.reconciliation
section of the data field. For example, the following
configuration sets the reconciliation to run every 2
minutes:

apiVersion: v1

kind: ConfigMap

metadata:

 name: argocd-cm

 namespace: argocd

data:

 timeout.reconciliation: 120s

Once you update/add this field, you will need to restart the
argocd-repo-server Deployment and the argocd-application-
controller StatefulSet in order to pick up the new setting.
Run the following two commands to restart these
components:

$ kubectl rollout restart sts -n argocd \

-l app.kubernetes.io/component=application-controller

$ kubectl rollout restart deployment -n argocd \

-l app.kubernetes.io/component=repo-server

Reducing the reconciliation timeout interval allows changes
to be detected and applied more quickly. However, this
comes with potential trade-offs, including increased system
load, which may impact the overall performance of your
Argo CD implementation. Additionally, shorter intervals
may lead to rate limiting from your Git provider,
particularly when using hosted services, like GitHub or
GitLab. Setting the reconciliation timeout to 0s effectively
disables reconciliation.
In general, retaining the default reconciliation interval of 3
minutes is considered best practice and is our
recommended approach. Rather than reducing the
reconciliation timeout, we suggest configuring webhooks
for on-demand synchronization and to enable better
integration with CI systems. This allows the webhook-
triggered updates to complement the default reconciliation
process, providing a balanced and efficient workflow.

Setting Up Webhooks

Setting up webhooks requires configuration both on the
Argo CD side and on the Git provider side. It is considered
best practice to first set up a webhook secret, then move on

to other required configurations. Argo CD accepts
unauthenticated webhook events since the only action it
performs is an on-demand refresh of the Application (which
potentially leads to reconciliation). However, the potential
exists for a distributed denial-of-service (DDoS) attack. This
is especially true if your Argo CD installation is public.

NOTE

For more information about DDoS attacks, the article from Cloudflare is a
great read.

Set the webhook secret by patching the argocd-secret
Secret in the argocd namespace. This can be accomplished
by patching the resource. Inspect the ch12/​mani⁠fests/argocd-
secret.yaml file:

apiVersion: v1

kind: Secret

metadata:

 name: argocd-secret

 namespace: argocd

type: Opaque

stringData:

 webhook.gogs.secret: supersecret

Apply this manifest by patching the existing argocd-secret
resource:

kubectl patch secret argocd-secret -n argocd \

--patch-file ch12/manifests/argocd-secret.yaml

After applying the manifest, the changes should take effect
immediately.

https://oreil.ly/gNLPR

Next, we’ll migrate a repository that we’ll use to test the
webhook. Some of these steps were completed as part of
the installation of Gitea in Chapter 9. Using Gitea to
migrate a repository is beyond the scope of this book, so a
script can be run to handle the migration for you:

bash ch12/scripts/migrate_repo.sh

Once the script runs successfully, you should be able to see
the simple-go repository
(https://git.upandrunning.local/upandrunning/simple-go). It
should appear similar to Figure 12-1.

Figure 12-1. Simple-go on Gitea

Deploy the manifests contained in the simple-go repository
by applying the Argo CD Application manifest for this
chapter. Inspecting the ch12/applications/simple-go.yaml file,
you will see the reference to the Gitea repository:

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: simple-go

 namespace: argocd

spec:

 project: default

 source:

 repoURL: https://git.upandrunning.local/upandrunning/simple-go

 targetRevision: main

 path: deploy/overlays/default

 destination:

 namespace: webhooks

 name: in-cluster

 syncPolicy:

 automated:

 prune: true

 selfHeal: true

 syncOptions:

 - CreateNamespace=true

Apply this manifest by running:

kubectl apply -f ch12/applications/simple-go.yaml

Once added, the Application should appear similar to
Figure 12-2.

Figure 12-2. Simple-go Application deployed

If you were to make a change in the repository, the change
wouldn’t be applied until the 3-minute reconciliation loop
runs. To shorten this timeframe, we will add a webhook to
perform an on-demand reconciliation as soon as a change is

made. Navigate to the simple-go repository
(https://git.upandrunning.local/upandrunning/simple-go)
and configure the webhook by completing the following
steps:

1. Click Settings in the upper right corner.

2. Click Webhooks on the left navigation bar.

3. Click Add Webhook on the righthand side and select
Gitea.

Fill out the following in the form:

In the Target URL, enter
https://argocd.upandrunning.local/api/webhook.

Leave HTTP Method as POST.

Leave POST Content Type as “application/json.”

In the Secret field, enter supersecret.

Make sure to leave Trigger On as Push Events.

Leave the “Branch filter” as “*.”

Leave Authorization Header blank.

Make sure Active is checkmarked.

Once complete, the form should appear similar to
Figure 12-3.

Figure 12-3. Webhook setup

Click on the Add Webhook button, and the page listing the
configured webhooks should be presented. You can test
this webhook by making a change in the repository, which
will trigger a reconciliation request to Argo CD. Test this by
navigating to the webhook repository
(https://git.upandrunning.local/upandrunning/simple-

go/src/branch/main/deploy/base/deploy.yaml) and click the
pencil icon to make an edit to the Deployment.

Change the value of the spec.replicas field from 1 to 2.
Then, scroll down and click on the Commit Changes button.
Visiting your Argo CD web UI, you will see the change
immediately reflected without having to wait for the

reconciliation loop. The configured webhook now will
trigger the reconciliation any time there’s a change to the
repository.
Navigate to the simple-go repository webhook settings
page (https://git.upandrunning.local/upandrunning/simple-

go/settings/hooks), and you will see a green dot next to the
webhook you just created, indicating that the webhook was
successfully submitted. The status within the webhooks
page should appear similar to Figure 12-4.

Figure 12-4. Successful webhook

Webhooks are an important part of a CI/CD workflow using
Argo CD because they enable automated, real-time
synchronization between a Git repository and Kubernetes
clusters. By triggering updates whenever changes occur in
Git, webhooks eliminate the need to wait for the
reconciliation loop and ensure immediate deployment of
new configurations.

CI/CD Integration via Tekton

Similar to an application that is managed by Argo CD, the
lifecycle of Argo CD Applications and their associated
manifests can take advantage of CI methodologies as well.
Triggering synchronization activities within Argo CD via

webhooks are a great way to reduce the time that it takes
to realize changes within Kubernetes clusters. However, by
leveraging this approach, it bypasses being able to leverage
some of the benefits that are inherent to CI, including the
ability to perform static analysis of the code base and to
facilitate more thorough testing scenarios.
A variety of CI tools and systems are available for use and
range from those that are a software as a service (SaaS)
solution to those that are self-managed. Similar to the
approach taken with source code management (SCM) and
the use of the Gitea instance that was deployed previously,
a self-managed solution will be used.
Tekton is a cloud native, Kubernetes-based system for
building CI/CD actions and offers platform engineers and
developers the ability to build robust solutions. Several
subprojects are available with Tekton, and its modular
design allows consumers the ability to enable only the
components they need. Table 12-1 provides an overview of
the Tekton subprojects and their purpose.

https://tekton.dev/

Table 12-1. Tekton projects

Project Description

Tekton
Pipelines

A set of Kubernetes CRDs for constructing
CI/CD pipelines

Tekton
Triggers

Instantiate pipelines based on events

Tekton
Chains

Tools to generate, store, and sign
provenance for artifacts that are built
with Tekton Pipelines

Tekton
Operator

Kubernetes-based operator to manage the
lifecycle of Tekton projects

Building a Tekton Pipeline

Pipelines provide the foundation for Tekton, as it includes,
as its name suggests, the tools necessary for building
CI/CD pipelines. We can use it to build a pipeline that not
only implements CI methodologies, but also illustrates how
Argo CD can be integrated within CI systems.
In addition to triggering the synchronization of Argo CD
Applications, which emulates the webhook invocation that
was used previously, we will also add a step that performs
syntactical analysis of the manifests that will be produced
to ensure that the manifests not only produce valid YAML-
formatted content, but also conform to recommended
practices.
So, in the end, our pipeline will consist of the following
actions:

Clone the Argo CD manifests from the Gitea
instance.

Verify the manifests meet conformance
requirements.

Synchronize the Argo CD Application.

Before focusing on the pipeline, the first step is to install
Tekton Pipelines to the kind cluster. The installation
consists of applying a single manifest file containing all of
the necessary resources. Execute the following command to
install Tekton Pipelines to the kind instance:

kubectl apply -f https://storage.googleapis.com/tekton-

releases/pipeline/latest/release.yaml

A new namespace called tekton-pipelines contains all of the
namespaced scoped assets associated with Tekton
Pipelines:

NAME READY STATUS RESTARTS

AGE

tekton-events-controller-869dfbbb89-4p9sm 1/1 Running 0

9m45s

tekton-pipelines-controller-84f497b9dd-2q62v 1/1 Running 0

9m45s

tekton-pipelines-webhook-6449f66676-9vjzj 1/1 Running 0

9m44s

Since Tekton is a Kubernetes-based CI/CD platform, each
of the components is implemented as a Custom Resource
Definition (CRD). Table 12-2 describes the key CRDs
associated with Tekton Pipelines.

Table 12-2. Tekton Pipelines entities

Entity Description

Task A series of steps that launches a specific
activity. Input parameters can be provided
to customize the execution, and outputs are
produced containing results.

TaskRun Instantiation of a Task containing input,
output, and execution parameters.

Pipeline A series of Tasks that accomplishes a desired
goal.

PipelineRun Instantiation of a Pipeline containing input,
output, and execution parameters.

As our pipeline consists of three distinct activities, each will
have an associated Task that defines the actions involved.
The first Task clones the repository from Git and includes a
set of input parameters, such as the URL and branch, that
should be retrieved. The second Task, which verifies the
manifests themselves, is where our pipeline provides real
business value.
Kustomize is used within Argo CD as the tool to process the
manifests stored within the Git repository. Only after the
manifests have been rendered by Kustomize can they be
verified. Linting is one such approach for performing static
code analysis and can be used as a method for verifying the
manifests that would be produced by Argo CD. yamllint is
one of the more popular YAML linting tools and includes
not only a wide range of features, but also the ability to
customize the execution to meet individual needs. The

https://oreil.ly/HsvSr

linting Task contains two total steps: render the manifests
provided to a target directory using Kustomize and then
execute yamllint against the rendered manifests.
The final task in our Pipeline uses the Argo CD CLI to
synchronize an individual Application within the Argo CD
instance.
Each of these tasks as well as the remainder of the
components needed to construct our pipeline are located in
the ch12/tekton/pipelines directory of the project
repository.

Navigate to the project repository and add each of the Tasks
to the webhooks namespace:

kubectl apply -n webhooks -f ch12/tekton/pipelines/git-clone-task.yaml

kubectl apply -n webhooks -f ch12/tekton/pipelines/kustomize-lint-task.yaml

kubectl apply -n webhooks -f ch12/tekton/pipelines/argocd-app-sync-task.yaml

A TaskRun is one such way any of these Tasks could be
executed. However, we will instead create a Pipeline called
lint-sync-argocd that coordinates the invocation between
each of these tasks to produce the desired business goal.
The Pipeline is included within the project repository and is
located at ch12/​tek⁠ton/pipelines/pipeline.yaml.

Upon inspecting the pipeline from the pipeline.yaml
manifest, you will see not only how tasks are referenced,
but also how input parameters can be provided. The
following are some of the primary components of a Tekton
Pipeline:

params

Parameters to customize the execution of a Pipeline or Task

workspaces

Allocates a Volume to a Pipeline or Task; commonly used to
share content between multiple tasks

taskRef

Reference to an existing Task that should be executed by the
Pipeline

runAfter

Coordinates when a specific Task is executed only after the
completion of another Task

Add the Pipeline to the webhooks namespace by executing
the following command:

kubectl apply -n webhooks -f ch12/tekton/pipelines/pipeline.yaml

Now that the Tasks and Pipeline have been added to the
webhooks namespace, we are almost ready to run our
Pipeline. A few more steps still need to be completed, as
they are requirements of the individual Tasks.
Recall from when the yamllint tool was introduced
previously that the execution can be customized, depending
on the desired use. Any customization to the default
execution can be made using a configuration file. This
approach mirrors how many other utilities are configured.
By inspecting the kustomize-lint task, you will see a
reference to a ConfigMap within the volumes section:

 volumes:

 - name: shared

 emptyDir: {}

 - name: yamllint-config

 configMap:

 name: '$(params.yamllint-configmap)'

Variables starting with params reference a parameter that
was previously defined within the Task. For the yamllint-

configmap within the kustomize lint Task, the default value
is yamllint-config. However, like any parameter, this value
can be overridden as needed.
A ConfigMap manifest has been provided in the
ch12/tekton/pipelines/yamllint-configmap.yaml file and
includes an embedded yamllint.yaml file that customizes the
execution of yamllint. The default yamllint configuration
needs to be modified to comply with the content that is
produced by the invocation of Kustomize against the
manifests. In particular, we need to disable the check
performed to verify that three dashes are included at the
beginning of each manifest (known as the document start)
as well as some of the rules associated with how content is
indented:

rules:

 document-start: disable

 indentation:

 indent-sequences: false

Add the ConfigMap to the webhooks namespace by executing
the following command:

kubectl apply -n webhooks -f ch12/tekton/pipelines/yamllint-configmap.yaml

The final preparatory step prior to triggering the Pipeline is
to provide the argocd-task-sync-and-wait task with the

location of the Argo CD server and the credentials that
should be used to facilitate the connection. By inspecting
the task, you can see that the address of the Argo CD
server instance is stored as a ConfigMap and the
credentials are stored as a Secret:

 stepTemplate:

 envFrom:

 - configMapRef:

 name: argocd-env-configmap # used for server address

 - secretRef:

 name: argocd-env-secret # used for auth (username/password or auth

token)

 steps:

 - name: sync-app

 image: quay.io/argoproj/argocd:$(params.argocd-version)

 script: |

 if [-z "$ARGOCD_AUTH_TOKEN"]; then

 yes | argocd login "$ARGOCD_SERVER" --username="$ARGOCD_USERNAME" \

 --password="$ARGOCD_PASSWORD";

 fi

 argocd app sync "$(params.application-name)" \

 --revision "$(params.revision)" $(params.flags)

 argocd app wait "$(params.application-name)" --health $(params.flags)

The stepTemplate declaration exposes the properties of both
the ConfigMap and Secret as environment variables into
any of the steps included in the Task.

Create a ConfigMap named argocd-env-configmap within the
webhooks namespace with the location of the Argo CD server
in a property called ARGOCD_SERVER using the following
command:

kubectl create configmap argocd-env-configmap \

--from-literal="ARGOCD_SERVER=argocd.upandrunning.local" \

-n webhooks --dry-run=client \

-o yaml | kubectl apply -f-

Next, credentials must be provided so that commands can
be executed against the Argo CD server using the Argo CD
CLI from within the task. While we highlighted how Argo
CD handles users and RBAC in Chapter 9, one of the
concepts that was not covered at that time, which does
provide an optimal solution for this use case, is project

roles.
Instead of creating and managing a full-fledged user for
use by our Pipeline, a project role can be used to perform a
restricted set of actions within a project using the CLI or
API. Access to resources is granted using the same syntax
as the standard Argo CD configuration. So, for this use
case, we will want to create a project role that has access
to synchronize and retrieve the state of Application
resources.
Using the Argo CD CLI, since the simple-go Application is
present within the default project, create a new project role
called tekton using the argocd proj role subcommand by
specifying the name of the project that the project role
should be created within and the name of the role:

argocd proj role create default tekton

With the project role created, assign policies so that it can
retrieve and synchronize Application resources using the
following commands:

argocd proj role add-policy default tekton \

 --action get --permission allow --object "*"

argocd proj role add-policy default tekton \

 --action sync --permission allow --object "*"

Since project roles are included within the AppProject
custom resource, the configurations can be expressed

declaratively. For the tekton project role created
previously, the following represents how it is defined within
the AppProject:

apiVersion: argoproj.io/v1alpha1

kind: AppProject

metadata:

 name: default

 namespace: argocd

spec:

 roles:

 - name: tekton

 policies:

 - p, proj:default:tekton, applications, get, default/*, allow

 - p, proj:default:tekton, applications, sync, default/*, allow

...

By default, applications are the resource for which project
role policies are applied. However, other resources, like
repositories, clusters, logs, and projects, can also be used.
It is also important to note that the target of a specific
policy must follow the proj:<project-name>:<role-name>
format; otherwise, the policy will not take effect.
To use a project role, and in our case, within a Tekton
pipeline, a JWT token must be created. The argocd proj role
create-token command is used to generate a JWT token to a
project role. By default, the token has no expiration.
However, an expiration should be added by specifying the -
e flag with the length of time the token should become
invalidated (such as 12h).
Create a JWT token for the token project role and set the
resulting value in the PROJECT_ROLE_JWT_TOKEN variable:

PROJECT_ROLE_JWT_TOKEN=$(argocd proj role create-token default tekton --token-

only)

Finally, create a secret called argocd-env-secret in the
webhooks namespace, which will be used by the argocd-task-

sync-and-wait task by executing the following command:

kubectl create secret generic argocd-env-secret \

 --from-literal=ARGOCD_AUTH_TOKEN=$PROJECT_ROLE_JWT_TOKEN \

 --namespace webhooks --dry-run=client -o yaml | kubectl apply -f -

Now that all of the components of the lint-sync-argocd

Pipeline, including the Tasks that the Pipeline will invoke
and the associated ConfigMaps and Secrets that are used
within the Tasks have been added, the next step is to run
the Pipeline. A Tekton Pipeline can be started by either
creating a PipelineRun custom resource or by using the
Tekton CLI (tkn).

The tkn CLI, similar to the Kubernetes (kubectl) and Argo
CD (argocd) CLIs, helps simplify the interaction and user
experience working with Tekton. It can be obtained from
multiple sources, including as a Kubernetes plugin, and is
supported on multiple platforms, including Linux, Windows,
and macOS. Download and install the plugin from the
Tekton website and follow the installation steps for the
associated platform.

Once the tkn CLI has been installed, the tkn pipeline start
subcommand can be used to start the lint-sync-argocd

Pipeline. This command is helpful for building a Tekton
PipelineRun resource. However, if a PipelineRun manifest is
already available, kubectl can be used instead to start an
instance of a Pipeline.

The ch12/tekton/pipelines directory includes a PipelineRun
manifest in the pipelinerun.yaml file. Start the lint-sync-

https://oreil.ly/d_i10

argocd Pipeline by adding the PipelineRun manifest to the
webhooks namespace by executing the following command:

kubectl create -n webhooks -f ch12/tekton/pipelines/pipelinerun.yaml

Once a PipelineRun has been created, list the status using
the tkn pipelinerun list command in the webhooks
namespace:

tkn pipelinerun list -n webhooks

NAME STARTED DURATION STATUS

lint-sync-argocd-2ktht 7 seconds ago --- Running

The best method for tracking the state of a PipelineRun as it
progresses is by viewing the execution logs using the tkn
pipelinerun logs subcommand. Monitor the status of the
PipelineRun created previously by executing the following
command:

tkn pipelinerun -n webhooks logs -L

The -L flag will display the content of the most recent
PipelineRun, while the -f flag follows the progress up to
completion.

Once the output completes, verify that the PipelineRun
completed successfully:

NAME STARTED DURATION STATUS

lint-sync-argocd-2ktht 2 minutes ago 24s Succeeded

You can also verify that the Argo CD Application has synced
successfully by viewing the status using either the Argo CD
CLI or the web interface, as shown in Figure 12-5.

Figure 12-5. Argo CD Application status after synchronization from the Tekton

Pipeline

The execution of the Tekton Pipeline provides the capability
to automate the verification of the manifests Argo CD will
process, including the synchronization of the Argo CD
Application. The missing piece, as it currently stands, is for
Gitea to trigger a Tekton Pipeline to begin whenever a
change to the repository occurs. This topic will be covered
in the following section.

Triggering Tekton Pipelines

Tekton Pipelines provides the constructs for building CI/CD
pipelines, but it does not include the capacity to
automatically start a pipeline. This is where another Tekton
subproject, Tekton Triggers, can fill the void. Tekton
Triggers enables the automated triggering of Tekton
Pipelines based on a variety of event sources and
conditions. One of the ways that a Pipeline can be activated
is from a webhook event whenever a change to a repository
occurs. By enabling this feature, not only will it emulate
how the Gitea instance is currently triggering the
synchronization of the Argo CD Application in an
automated fashion, but it can also provide the additional
enhancements that we have built into the Tekton Pipeline.
Since Tekton Triggers is a separate Tekton subproject, it is
not included when Tekton Pipelines was installed
previously. However, it can be installed to the kind cluster
by adding the base set of resources along with a set of

supported interceptors, which provide additional logic for
specific types of events:

kubectl apply -f \

https://storage.googleapis.com/tekton-releases/triggers/latest/release.yaml

kubectl apply -f \

https://storage.googleapis.com/tekton-

releases/triggers/latest/interceptors.yaml

Now that Tekton Triggers has been installed, let’s review
the installed set of components. Similar to Tekton
Pipelines, Tekton Triggers also contain a number of CRDs
that are used to expose and manage how Pipelines are
triggered. Table 12-3 describes the entities associated with
Tekton Triggers.

Table 12-3. Tekton Triggers entities

Entity Description

EventListener Application listening for Events

Trigger Specifies what will occur when an Event is
received; contains a TriggerTemplate and TriggerBin
ding and, optionally, an Interceptor

TriggerTemplate The blueprint for a TaskRun or PipelineRun

TriggerBinding Fields in the Event payload that are
injected into a TriggerTemplate, which can in
turn populate the TaskRun or PipelineRun resource

Interceptor “Catchall” event processor to perform
additional payload filtering, verification

The relationship between each of these entities and how a
webhook invocation results in the creation of a PipelineRun
is depicted in Figure 12-6.

Figure 12-6. Tekton PipelineRun

The first step when transitioning from a standalone
PipelineRun resource to Tekton Triggers is how the
PipelineRun will be instantiated. A TriggerBinding resource
provides the construct for creating a PipelineRun whenever
an event is produced. Locate the tekton-triggers-argocd-
triggertemplate.yaml file within the ch12/tekton/triggers

directory and notice how the existing PipelineRun has been
included within the resourcetemplates property:

apiVersion: triggers.tekton.dev/v1beta1

kind: TriggerTemplate

metadata:

 name: tekton-triggers-argocd

spec:

 params:

 - description: Git revision

 name: revision

 resourcetemplates:

 - apiVersion: tekton.dev/v1beta1

 kind: PipelineRun

 metadata:

 generateName: lint-sync-argocd-

 spec:

 pipelineRef:

 name: lint-sync-argocd

 podTemplate:

 securityContext:

 fsGroup: 65532

 workspaces:

 - name: shared-data

 volumeClaimTemplate:

 spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 params:

 - name: repo-url

 value: https://git.upandrunning.local/upandrunning/simple-go.git

 - name: argocd-revision

 value: $(tt.params.revision)

 - name: manifests-dir

 value: deploy/overlays/default

 - name: app-name

 value: simple-go

 - name: argocd-flags

 value: --insecure --grpc-web

One of the key constants that you will see throughout this
implementation of Tekton Triggers is the ability to pass
along information from the Gitea webhook invocation to the
Tekton Pipeline. In particular, we will reference the specific
Git revision that triggered the webhook invocation, which
enables Argo CD to synchronize a specific commit so that
there is an assurance the only content that has undergone
the Tekton Pipeline is applied to the cluster.

By reviewing the TriggerTemplate, you will see that the
.spec.params section contains a parameter called revision.
This parameter is then used within the blueprint for the
PipelineRun resource through the $(tt.params.revision)
property.
The glue between the content provided by the Gitea
webhook and how it is fed to the TriggerTemplate is a
TriggerBinding:

apiVersion: triggers.tekton.dev/v1beta1

kind: TriggerBinding

metadata:

 name: tekton-triggers-argocd

spec:

 params:

 - name: revision

 value: $(body.after)

By inspecting the content of the tekton-triggers-argocd-
triggerbinding.yaml within the ch12/tekton/triggers

directory, notice how the name within the .spec​.par⁠ams
property includes a reference to the name of the parameter
from the TriggerTemplate. The value can originate from
either the webhook body or header. In this case, the after
property within the body contains the specific revision.

Finally, an EventListener is used to not only expose an
endpoint for triggering Tekton Pipeline, but it also brings
together the TriggerTemplate and TriggerBinding. An
EventListener essentially starts a pod that has the
responsibility of capturing the input, extracting the
relevant fields, and creating an associated PipelineRun
resource.

Since the pod associated with the EventListener performs
invocations against the Kubernetes API, appropriate RBAC
permissions must be assigned. To do so, a ServiceAccount
and a RoleBinding must also be created and associated with
the EventListener. Inspect the contents of the EventListener
in the file located at ch12/tekton/triggers/tekton-triggers-
argocd-el.yaml of the project repository, where you will see
how each of these concepts is brought together. In
addition, an Ingress is also included to demonstrate how an
EventListener can be exposed to services running outside
the cluster. Even though the Gitea instance that triggers
the webhook is running within the cluster, it is important to
illustrate how to expose CI/CD capabilities for other
services to use.
Execute the following commands to apply the remaining
Tekton Triggers–related resources to the webhooks
namespace:

kubectl apply -n webhooks \

 ch12/tekton/triggers/tekton-triggers-argocd-el-clusterrolebinding.yaml

kubectl apply -n webhooks ch12/tekton/triggers/tekton-triggers-argocd-el-

serviceaccount.yaml

kubectl apply -n webhooks ch12/tekton/triggers/tekton-triggers-argocd-

triggerbinding.yaml

kubectl apply -n webhooks ch12/tekton/triggers/tekton-triggers-argocd-

triggertemplate.yaml

kubectl apply -n webhooks ch12/tekton/triggers/tekton-triggers-argocd-el.yaml

kubectl apply -n webhooks ch12/tekton/triggers/tekton-triggers-argocd-

ingress.yaml

The last step is to modify how the Argo CD Application
synchronizes content. Currently, as soon as modifications
are detected or triggered, content from the main branch of
the Git repository is applied to the Kubernetes cluster. To
ensure that changes are only applied via the Tekton
Pipeline and at a specific revision, update the Argo CD

Application to remove the automated syncPolicy and the
targetRevision properties using the following command:

kubectl patch application simple-go -n argocd --type=json \

-p="[{'op': 'remove', 'path': '/spec/source/targetRevision'},

 {'op': 'remove', 'path': '/spec/syncPolicy/automated'}]"

Now, update the URL of the webhook configured within the
simple-go repository by navigating to the repository
(https://git.upandrunning.local/upandrunning/simple-go)
and then completing the following steps:

1. Click the Settings button.

2. Click the Webhooks button on the navigation bar.

3. Click the pencil icon next to the already configured
webhook currently pointing at Argo CD.

4. Update the Target URL with https://tekton-triggers-

argocd.upandrunning.local/webhook.

5. Click the Update Settings button to apply the
changes.

Either make a change to the repository using the steps
provided previously or click the Test Delivery button within
the Webhook Update page. Regardless of the option
chosen, as soon as either a new commit is pushed to the
repository or a test delivery is triggered, verify that a new
PipelineRun has started by executing the following
command:

tkn pipelinerun list -n webhooks

The manifests contained within the repository will once
again undergo linting, and the Argo CD Application will be

synchronized. However, one very important difference
occurred compared to the prior synchronizations. Instead
of synchronizing the state of a target branch, an individual
revision was used associated with the webhook. This can be
confirmed by reviewing the current status of the Argo CD
Application:

argocd app get argocd/simple-go

Name: argocd/simple-go

Project: default

Server: in-cluster

Namespace: webhooks

URL: https://argocd.example.com/applications/simple-go

Repo: https://git.upandrunning.local/upandrunning/simple-go

Target:

Path: deploy/overlays/default

SyncWindow: Sync Allowed

Sync Policy: <none>

Sync Status: Synced to (7920e48)

Health Status: Healthy

Notice that the Sync Status value contains the specific
revision instead of just the branch name. This confirms that
not only did the webhook trigger the Tekton Pipeline, but
the revision was also extracted properly from the payload
and passed all the way to the Argo CD Application.

Summary

In this chapter, we illustrated how to apply continuous
integration concepts with Argo CD. We first enabled Argo
CD to accept triggering Application synchronizations
through webhook innovations. Then, we set up a new
repository within our Gitea instance along with adding a
webhook to target automatically synchronizing an Argo CD
Application whenever a new change occurred. Afterward,
we introduced Tekton as a Kubernetes-based platform for

implementing CI patterns. We explored how to not only
configure a CI pipeline using Tekton Pipelines to perform
multiple actions, including the linting of manifests and
synchronization of an Argo CD Application, but also how to
automatically trigger the pipeline when a change occurred
within the Git repository using Tekton Triggers. By
demonstrating how to implement CI practices with Argo
CD, changes can be applied more rapidly with the
necessary safeguards in place to release more confidently.

Chapter 13.

Operationalizing Argo CD

As Argo CD becomes the interface for all your Kubernetes
clusters, it quickly becomes an important piece to your
organization. Integrating monitoring capabilities with Argo
CD can provide insights into deployment status and health,
enabling teams to swiftly detect and resolve issues beyond
just Argo CD Application triage. Coupled together with
notifications, these features ensure that the stakeholders in
your organization are immediately informed of any changes
or problems with your infrastructure or applications,
allowing for prompt response and mitigating downtime.
High availability is another important aspect, as it ensures
that the Argo CD service remains resilient and accessible.
Scalability is also important and related to the topic of high
availability, allowing Argo CD to manage the increasing
number of applications and clusters seamlessly as the
organization grows.
Operationalizing Argo CD not only enhances deployment
reliability and efficiency, but also supports the
organization’s ability to scale and adapt to evolving
demands, ensuring sustained delivery of business value. In
this chapter, we’ll dive into these important factors and go
over different methods that will help you to operationalize
Argo CD.

Monitoring

Using the Argo CD UI for application issue triage and
observability offers advantages in managing and
troubleshooting Kubernetes workload deployments. The
web interface of Argo CD provides real-time visibility into
the state of your Argo CD Applications, enabling quick
identification of discrepancies between the desired and
actual states. This visual representation simplifies the
detection of issues, such as configuration drifts or failed
deployments, allowing for faster root cause analysis. Also,
the UI facilitates easy navigation through application
histories, manifest changes, and deployment logs,
streamlining the debugging process.
The original intent of the Argo CD UI is to abstract
Kubernetes primitives and bubble up information that
developers care about. Argo CD UI can tell you when
something goes wrong and give you the tools to help you
triage; however, it doesn’t give you the “how” or “why”
something failed. Moreover, Argo CD UI only gives you
information about itself. It doesn’t know any information
about other Argo CD instances. This is why tools like
Prometheus and Grafana are needed for a complete
picture.
Monitoring with Prometheus and Grafana on a Kubernetes
system is crucial for ensuring the health, performance, and
reliability of not only applications, but also infrastructure
components as well. Prometheus, an open source
monitoring and alerting toolkit, excels at collecting and
storing time-series data, which is essential for tracking
metrics all across your organization’s environment. It
enables real-time monitoring of application performance,
resource usage, and cluster health. Grafana complements
Prometheus by providing powerful visualization

capabilities, allowing operators to create intuitive
dashboards and alerts. Together, they enable proactive
issue detection, efficient troubleshooting, and informed
decision-making, thereby enhancing system stability and
optimizing resource utilization. This combination with Argo
CD can provide more visibility into your workload
deployments.

Installing Prometheus Stack

The Prometheus Stack consists of Prometheus, which is
used to collect metrics, and Grafana, which is used to
visualize those metrics. Installing the Prometheus Stack is
pretty straightforward using Helm. In the accompanying
Git repository, we’ve included a Helm values file to use to
install this stack. We are using the basic installation, but
applying some basic additional configurations. If you
inspect the ch13/helm/values/prometheus-values.yaml file,
observe that as part of the installation, we are installing the
recommended Grafana dashboard from the Argo CD Project
repository:

grafana:

 # snippet for brevity

 dashboards:

 default:

 argocd:

 url: https://raw.githubusercontent.com/argoproj/argo-cd/ \

 master/examples/dashboard.json

Using this baseline configuration is enough to not only get
you started with monitoring Argo CD, but it is also enough
for you to see the value right away. You’ll be able to gain
valuable insights, including how much memory Argo CD is
taking up or how long syncs are lasting. To install the
Prometheus Stack, follow these steps:

1. Add the Prometheus repository using Helm:

$ helm repo add \

prometheus-community https://prometheus-community.github.io/helm-

charts

2. Update the Helm repo data to get the most recent
content:

$ helm repo update

3. Install the Prometheus Stack (which includes
Grafana), using the provided values in the
accompanying Git repo:

$ helm upgrade -i kube-prometheus-stack -n monitoring --create-

namespace \

--values ch13/helm/values/prometheus-values.yaml \

prometheus-community/kube-prometheus-stack

After installing the chart, you should see Pods running in
the monitoring namespace, similar to the following:

$ kubectl get pods -n monitoring

NAME READY STATUS

RESTARTS AGE

alertmanager-kube-prometheus-stack-alertmanager-0 2/2 Running 0

34s

kube-prometheus-stack-grafana-5c77f67c66-zvnnr 3/3 Running 0

41s

kube-prometheus-stack-kube-state-metrics-c854dc876-zt7bs 1/1 Running 0

41s

kube-prometheus-stack-operator-5c68cddf55-khf97 1/1 Running 0

41s

kube-prometheus-stack-prometheus-node-exporter-lzqpb 1/1 Running 0

41s

prometheus-kube-prometheus-stack-prometheus-0 2/2 Running 0

34s

Now that the Prometheus Stack is up and running, you can
configure Argo CD to enable Prometheus to scrape the
metrics provided by Argo CD.

Configuring Argo CD for Prometheus

Next, you will need to set up Argo CD to expose the metrics
endpoints. This can be accomplished by using the provided
ch13/helm/values/argocd-metrics-values.yaml values file. In
the file, you will notice that each component, Application,
ApplicationSet, repo server, and API server controller has a
similar setup configuration:

snipped for brevity

 metrics:

 enabled: true

 serviceMonitor:

 enabled: true

 additionalLabels:

 release: kube-prometheus-stack

It’s important to note that the
<controllerName>.metrics.serviceMonitor​

.additio⁠nalLables.release section needs to be set to the
release name of your Prometheus Stack Helm install. In our
case, we named the release kube-prometheus-stack.

NOTE

You can retrieve the name by running helm ls -n monitoring.

To set up Argo CD for Prometheus, you can use Helm
directly. Update the Argo CD installation using the
provided values file in the accompanying Git repository:

$ helm upgrade -i argo-cd -n argocd --create-namespace \

--reuse-values --values ch13/helm/values/argocd-metrics-values.yaml argo/argo-

cd

NOTE

Using --reuse-values will ensure you don’t overwrite the values you’ve
already used when installing and modifying your Argo CD installation.

The upgrade not only sets up Argo CD monitoring
endpoints, but also sets up the ServiceMonitor needed to let
Prometheus know where these endpoints are. You can see
which ServiceMonitors got applied by running the following
command:

$ kubectl get ServiceMonitor -n argocd

NAME AGE

argocd-application-controller 86m

argocd-applicationset-controller 86m

argocd-repo-server 86m

argocd-server 86m

You can inspect these ServiceMonitors if you wish. For
example, inspect the argocd-server by running kubectl get
ServiceMonitor/argocd-server -n argocd -o yaml and you
should see a result similar to the following:

apiVersion: monitoring.coreos.com/v1

kind: ServiceMonitor

metadata:

 labels:

 release: kube-prometheus-stack

 name: argocd-server

 namespace: argocd

spec:

 endpoints:

 - interval: 30s

 path: /metrics

 port: http-metrics

 namespaceSelector:

 matchNames:

 - argocd

 selector:

 matchLabels:

 app.kubernetes.io/component: server

 app.kubernetes.io/instance: argocd

 app.kubernetes.io/name: argocd-server-metrics

Here, the endpoints, namespaceSelector, and selector that
Prometheus uses for metric scraping have been configured
for you by the Helm release we completed. For more
information about Prometheus, please see the official
documentation.

Accessing Grafana

As previously mentioned, Grafana was installed as part of
the Prometheus Stack installation. Grafana is also
integrated with Prometheus to visualize the metrics being
collected. You can view the Grafana UI by running the
following port-forwarding command in a terminal window:

$ kubectl port-forward -n monitoring svc/kube-prometheus-stack-grafana 8080:80

NOTE

Most likely, you’ll want to add an Ingress instead of using port forwarding.
Consult the Prometheus Helm chart for more information on how to enable
Ingress.

Once the connection has been established, you can visit
http://localhost:8080 in a web browser and log in with
“admin” as the username and “prom-operator” as the
password. Once authenticated, you will be presented with
the following page, as seen in Figure 13-1.

https://prometheus.io/docs

Figure 13-1. Grafana overview page

From here, you can click on Dashboards, which will take
you to the dashboard overview page, as seen in Figure 13-
2.

Figure 13-2. Dashboard overview

From here, select ArgoCD to be taken to the Argo CD
metrics dashboard. The dashboard will appear similar to
the depiction in Figure 13-3.

Figure 13-3. Argo CD metrics page

Feel free to explore the available metrics. You will see
things that aren’t normally visible in the Argo CD UI; for
example, system-based metrics like Memory Usage, CPU
Usage, and Goroutines. These metrics go beyond just Argo
CD Application–specific metrics and also include the
platform performance; as a whole.

Notifications

Argo CD Notifications is an essential extension for Argo
CD. The premise of Argo CD Notifications is that it
continuously monitors Argo CD Application events,
including (but not limited to) successful syncs, failed syncs,
when an Application is deployed, or when an Application
enters a degraded stage. It also provides a flexible
mechanism to notify users about important changes in the
Application state. Leveraging a system of triggers and
templates, it allows users to configure when notifications
should be sent and customize the notification content to
provide any relevant information.

https://oreil.ly/uUOtp

Argo CD Notifications includes a catalog of useful pre-built
notification triggers and templates, enabling teams to
quickly set up notifications without the need to create new
notifications from scratch. These triggers and templates
are stored in the argocd-notifications-cm ConfigMap in the
argocd namespace.
For example, the following template will send information
about the sync status of an Argo CD Application:

apiVersion: v1

kind: ConfigMap

metadata:

 name: argocd-notifications-cm

data:

 template.my-custom-template-slack-template: |

 message: |

 Application {{.app.metadata.name}} sync is {{.app.status.sync.status}}.

 Application details:

{{.context.argocdUrl}}/applications/{{.app.metadata.name}}.

While templates are used to generate the notification
content, triggers define the condition of when the
notification needs to be sent. The definition includes items
like name, condition, and notification template reference.
For example, the following trigger sends a notification
when an Argo CD Application sync was successful:

apiVersion: v1

kind: ConfigMap

metadata:

 name: argocd-notifications-cm

data:

 trigger.on-sync-succeeded: |

 - description: Application syncing has succeeded

 send:

 - app-sync-succeeded

 when: app.status.operationState.phase in ['Succeeded']

Note that it defines which template to use when sending
the notification. In the previous example, the app-sync-
succeeded template will be used.
Another component of Argo CD Notifications is the
Notification Services. These services include the receiving
end of the notification process—Slack, email, GitHub, and
the catchall webhook, as it can invoke arbitrary endpoints.
Depending on your organization, you may elect to only send
notifications that are critical (like using the email service to
send an alert to PagerDuty) or just informational, like
sending a notification to a Slack channel.
In this section, we will be setting up Mattermost, an open
source chat platform, to receive notifications from Argo CD.

Installing Mattermost

We will be using Helm to install Mattermost, as well as
several of its dependencies. In order to install the
Mattermost Helm chart, you will need to add the repository
and update the content. Run the following command to add
the repository:

$ helm repo add mattermost https://helm.mattermost.com

Next, run the following to update the repository definitions:

$ helm repo update

Once complete, you can use the Helm chart and values
provided in the accompanying Git repository to install the
Mattermost Operator and the required PostgreSQL
database:

https://helm.mattermost.com/

$ helm upgrade -i --dependency-update mattermost-operator \

-n mattermost-operator --create-namespace ch13/helm/charts/mattermost/

The Helm chart installs the Mattermost Operator and
database, but not Mattermost itself. To install Mattermost,
you will need to apply the Mattermost custom resource to
instantiate the instance. The custom resource is included
within the Git repo. Execute the following command to
apply the configuration:

$ kubectl apply -f ch13/manifests/mattermost.yaml

After a few moments, the Mattermost stack should be
running in the mattermost-operator namespace along with its
dependencies:

$ kubectl get pods -n mattermost-operator

NAME READY STATUS RESTARTS AGE

mattermost-b948dc97c-2khkk 1/1 Running 0 116s

mattermost-operator-679d85f859-wsrft 1/1 Running 0 13m

mattermost-operator-postgresql-0 1/1 Running 0 13m

minio-868f8c994b-2cljs 1/1 Running 0 116s

Configuring Mattermost

Now that Mattermost and its dependencies are up and
running, you will need to perform the initial configuration
of the stack in order for it to receive notifications from Argo
CD. Visit https://mattermost.upandrunning.local and you
should see a page similar to Figure 13-4.

Figure 13-4. Mattermost setup

Here, you can enter an email address, a username, and a
password. Once complete, click on Create Account. This
will take you to the next page, where you can join a team.
Since this is a new installation, there will not be any team
to join, as depicted in Figure 13-5.

Figure 13-5. Join a team page

Since no team has been previously created, create a new
team by clicking on the “Create a team” line and entering
the name devops, as in Figure 13-6.

Figure 13-6. Create DevOps team

After clicking Next, a confirmation page will be displayed.
Verify the team URL name, as it should appear similar to
Figure 13-7.

Figure 13-7. Team confirmation page

Now, on the following page, click on the three-line
hamburger menu and select System Console, as shown in
Figure 13-8.

Figure 13-8. Selecting System Console

On the System Console page, scroll down on the left
navigation bar and select Bot Accounts under Integrations,
as shown in Figure 13-9.

Figure 13-9. Integration Bot Account settings

In the Bot Accounts configuration page, select “true” next
to the Enable Bot Account Creation setting, as shown in
Figure 13-10.

Figure 13-10. Enable Bot Account Creation

Click Save and then click on the hamburger menu button
on the top left and select “Switch to devops,” as shown in
Figure 13-11.

Figure 13-11. Switching to DevOps

Back in the DevOps team page, select the hamburger menu
on the top left again and select Integrations, as shown in
Figure 13-12.

Figure 13-12. Selecting Integrations

On the left navigation menu, click on Bot Accounts, and
then click on the Add Bot Account button. This will take you
to the Add Bot Account page. Here, enter “argocd-
notifications” as the username for the bot account, leaving
the rest as the defaults, and click on Create Bot Account at
the bottom of the page. Once the bot account has been
created, the resulting page will display your bot’s token, as
shown in Figure 13-13.

Figure 13-13. Token page

NOTE

Your token will be different.

Make note of this token, as you won’t be able to see it again
(you can always re-create the token if needed). Click on the
Done button on the bottom right to complete the bot
account creation process.
Next, on the top left, click on “Back to Mattermost.” There,
you will now need to invite the bot to your team. To

complete this task, click on the hamburger menu on the top
left again and select Invite People. On the “Invite Members
to devops” page, add the @argocd-notifications bot
account, as shown in Figure 13-14.

Figure 13-14. Inviting argocd-notifications

Click on Invite Members; on the following page, click on
the Done button to return to the DevOps team page. Add a
channel by clicking the “+” symbol next to the PUBLIC
CHANNELS navigation on the lefthand side of the page.
This will bring up the New Channel dialog box. Enter
appstatus in the Name field, as shown in Figure 13-15.

Figure 13-15. Setting up appstatus channel

Leaving the remaining fields at their default values, click
on Create Channel. Once the channel has been created, you
will return to the DevOps team page. Here, select the
newly created “appstatus” channel by clicking on it on the
left navigation bar. Then, in the chat input field, type
/invite @argocd-notifications, as shown in Figure 13-16.

NOTE

You might need to click on Skip Tutorial or go through the tutorial before you
can invite the bot to the “appstatus” channel you just created.

Figure 13-16. Invite argocd-notifications bot

Press Enter, and your bot should be added to the channel
now. Next, on the top left where it displays “appstatus,”
you’ll see a down arrow. Click on it and select View Info, as
shown in Figure 13-17.

Figure 13-17. View Info selection

On the “About appstatus” page, make note of the channel
ID, as it will be needed later on. A depiction will appear
similar to Figure 13-18.

Figure 13-18. About appstatus ID dialog

Note that we’ve outlined the ID in a red square, as it’s hard
to see on the pop-up. Also note that your ID will be
different based on your environment. Go ahead and close
this pop-up by clicking on the X in the upper right corner.
Now that you have set up Mattermost and you have made
note of your Token ID and your Channel ID, you can move
on to integrating Argo CD Notifications.

Setting Up Argo CD Notifications

We will be using Helm to upgrade the configuration of Argo
CD to send notifications. We will use the chart to add an
Argo CD Notifications template and a trigger as well. We
will also use the Helm chart to tell Argo CD about the
Mattermost token that was created in the previous section.
By inspecting the template we will be using found in the
ch13/helm/values/argocd-notification-values.yaml file, you
will see the following (code has been cut off for space
reasons):

notifications:

 templates:

 template.app-sync-succeeded: |

 message: |

 Application {{.app.metadata.name}} has been successfully synced at ...

 Sync operation details are available at: {{.context.argocdUrl}}...

 mattermost:

 attachments: "[{\n \"title\": \"{{ .app.metadata.name}}\",\n

\"title_link\"...

This is the template that will be used when sending a
message to the Mattermost channel we configured in the
previous section. Take note here where we define the name
of service under the message section, which is set to
mattermost. The trigger for this template can be seen in the
same ch13/helm/values/argocd-notification-values.yaml file:

notifications:

 triggers:

 trigger.on-sync-succeeded: |

 - description: Application syncing has succeeded

 send:

 - app-sync-succeeded

 when: app.status.operationState.phase in ['Succeeded']

Here, the trigger is configured to send the app-sync-
succeeded template (with the relevant data) when an
Application has successfully performed a sync. Using the
token from the previous step where you created the
argocd-notifications bot account, set up the Argo CD
Notification integration with Mattermost using the Helm
ch13/helm/values/argocd-notification-values.yaml values
file provided, replacing <token> with your Mattermost bot
token:

$ helm upgrade -i argocd -n argocd --create-namespace \

--reuse-values --values ch13/helm/values/argocd-notification-values.yaml \

--set notifications.secret.items.mattermost-token=<token> argo/argo-cd

You can verify that the configuration has been set properly
by running kubectl get cm argocd-notifications-cm -n argocd
-o yaml and kubectl get secret argocd-notifications-secret -n
argocd -o yaml. The output should show the configuration
update we provided in the Helm values file.
The next step is to set up a subscription on an Argo CD
Application, which is how Argo CD knows when to set a
notification. A subscription on an Argo CD Application can
be defined using the notifications.argoproj.io/subscribe.
<trigger>.​<ser⁠vice>: <recipient> annotation on the
Application object where <trigger> is the on-sync-succeeded
trigger we added, <service> is mattermost (which is
configured in the template), and <recipient> is the channel
ID you copied from the previous section.
To demonstrate the use of Argo CD Notifications, we will
first deploy a sample Application included for this chapter
and wait for it to sync:

$ argocd app create --file ch13/argocd/simple-go.yaml

$ argocd app sync argocd/ch13-simplego

Now that the Argo CD Application is applied and synced,
we will subscribe it to the notification engine by providing
the proper annotation, replacing <channel-id> with the
channel ID you copied in the previous section:

$ kubectl annotate application ch13-simplego -n argocd \

notifications.argoproj.io/subscribe.on-sync-succeeded.mattermost=<channel-id>

Next, sync the Argo CD Application:

$ argocd app sync argocd/ch13-simplego

By executing this command, a notification will be sent to
the “appstatus” channel on your Mattermost installation.
The received notification should look similar to Figure 13-
19.

Figure 13-19. Notification sent

NOTE

You can send notifications to multiple channels by listing them in the
annotation separated by semicolons. For example, channel-id1;channel=id2.

As demonstrated by this use case, integrating Argo CD
Notifications into your deployment process enhances
observability, reliability, and responsiveness, ensuring that
teams are promptly informed about the state of their
applications and deployments, allowing them to swiftly
address any issues and maintain the desired state of their
applications.

High Availability

Argo CD operates in a stateless architecture, ensuring
robustness and reliability. All data used for Argo CD is
persisted as Kubernetes objects, which are subsequently
stored in Kubernetes’ etcd datastore. Redis is utilized
within Argo CD solely as a transient cache, meaning it
serves to temporarily store data to improve performance.
Should Redis be lost or experience failure, it poses no risk
to the continuity of service, as the cache can be seamlessly
rebuilt without any data loss or service disruption when the
cache system returns online. This design choice puts the
responsibility of high availability onto Kubernetes to
reschedule Pods and other workloads to different nodes.
This means that if Argo CD is running on a highly available
Kubernetes installation, Argo CD will be highly available.
Still, more resiliency can still be achieved, even in a
relatively robust environment. To that end, Argo CD does
provide a mechanism for running Argo CD in a highly
available configuration. This mechanism can be
accomplished using the Argo CD Helm chart. There are two
primary ways of deploying Argo CD in high availability
(HA) mode: using autoscaling of pods or setting a fixed
number of pods.

NOTE

If you’re using the kind cluster, the following won’t work. You will need a
multinode (minimum of three) Kubernetes cluster. You can view how to
create a multiple-node cluster in the kind documentation page.

To use HA mode, the following Helm values can be used:

redis-ha:

 enabled: true

controller:

 replicas: 1 # We will scale this controller in a different section

server:

 replicas: 2

repoServer:

 replicas: 2

applicationSet:

 replicas: 2

To use HA mode with autoscaling, the following Helm
values can be used:

redis-ha:

 enabled: true

controller:

 replicas: 1

server:

 autoscaling:

 enabled: true

 minReplicas: 2

repoServer:

 autoscaling:

 enabled: true

 minReplicas: 2

https://oreil.ly/ok4ro

applicationSet:

 replicas: 2

NOTE

The controller.replicas section is set to 1 because setting it to anything
higher will enable sharding. Sharding will be covered in the next section.

Once you have set those values, you can use Helm to
upgrade an existing release to use the HA configuration.
For example:

$ helm upgrade -i argocd -n argocd --reuse-values \

--values your-values-argocd-ha.yaml argo/argo-cd

Running Argo CD in an HA configuration assumes you are
running at least three worker nodes in your Kubernetes
environment. The reason for this is that Argo CD deploys
Redis using a StatefulSet with podAntiAffinity rules that is
configured to not schedule two of the same Redis pods on
the same node. The reason that three is needed is that it’s
the minimum number of replicas required for Redis to
reach quorum. For more information about the
configuration needed to achieve HA with Redis, you can
read its documentation.

TIP

It’s recommended to set affinity rules as well for the controllers you are
scaling to take advantage of the additional nodes.

https://oreil.ly/NImCm

Scalability

Scalability is another important topic that goes hand in
hand with high availability. While high availability helps
with scalability, that is not the main focus. Further
configuration must be completed in order to achieve
scalability, beyond just setting up high availability. While
how you scale will depend on a number of factors, the two
most common things to take into account are scaling up
and scaling out (sharding).

Scaling Up

The quickest way to get the most out of your Argo CD
installation is to add more resources to each component.
Each component is configured with sensible defaults with
respect to resource limits and requests. These defaults are
satisfactory for most cases for the majority of workloads. As
your organization grows, and your Argo CD implementation
gets busier and busier, you may find the need to adjust
these limits. Table 13-1 summarizes each Argo CD
component, what they are used for, and some of the
considerations when scaling up your installation.

Table 13-1. Argo CD components summary

Controller When to scale

Redis When your installation is sending a lot
of requests to Kubernetes; also when
you have a lot of repositories or large
repositories

Application
controller

When you have many Applications,
where it might take some time to get
the statuses of all Applications

API server A busy system in a multi-tenant setup
where UI and CLI are becoming slow

Repo server When you have many repos and/or
when you have a large mono-repo (a
single repository with most or all K8S
resources)

ApplicationSet
controller

When you have many ApplicationSets
or when you have ApplicationSets that
generate many Applications

You can use the Argo CD Helm chart to set the resources
for each component. The following is an example set of
values that can be used as a baseline. Keep in mind that
your settings will be different, depending on a number of
factors, like your specific implementation, environment,
and Kubernetes cluster settings:

redis:

 resources:

 limits:

 cpu: 200m

 memory: 128Mi

 requests:

 cpu: 100m

 memory: 64Mi

controller:

 resources:

 limits:

 cpu: 500m

 memory: 512Mi

 requests:

 cpu: 250m

 memory: 256Mi

server:

 resources:

 limits:

 cpu: 100m

 memory: 128Mi

 requests:

 cpu: 50m

 memory: 64Mi

repoServer:

 resources:

 limits:

 cpu: 50m

 memory: 128Mi

 requests:

 cpu: 10m

 memory: 64Mi

applicationSet:

 resources:

 limits:

 cpu: 100m

 memory: 128Mi

 requests:

 cpu: 100m

 memory: 128Mi

Once you set your desired settings, you can use Helm to
upgrade your Argo CD installation with the values in the
following command:

$ helm upgrade -i argo-cd -n argocd --reuse-values \

--values sample-argo-cd-resources-values.yaml argo/argo-cd

It’s recommended to monitor your Argo CD consumption
(using Prometheus and Grafana, for example) and adjust
these accordingly once you have some historical data.

Sharding

In the previous section on high availability, it was noted
that the number of Application controller replicas was set
to 1. This is because scaling the Application controller not
only gives you high availability, but it also enables sharding
for the Argo CD installation. In this section, we will
introduce sharding and how it can be enabled in your Argo
CD installation.
Sharding occurs at the Application controller level and
focuses solely on the managed clusters that you have added
to Argo CD during a sync operation. When your Argo CD
installation is set up for sharding, each managed cluster
will use one of the shards to perform the duties of the
Application controller (syncing state is one example). How
Argo CD decides which managed cluster uses which shard
depends on which algorithm is being used. As of this
writing, there are two algorithms available, legacy and
round-robin:

legacy

This is the default algorithm and uses a unique identifier
(UID)-based distribution of sync operations (which is
nonuniform). This means that you may not get an even
distribution of shards to managed clusters.

round-robin

This algorithm uses an equal distribution across all shards.
As of this writing, this method of sharding is considered
“alpha.”

We are going to be using the legacy algorithm for this
section, since round-robin is still in its first phase of
development at the time of this writing. Also, practically
speaking, round-robin is a good use case for when you’re
adding/removing managed clusters frequently. Generally
speaking, legacy is recommended and will work for most
use cases.
The Argo CD Application controller runs in a StatefulSet
and can be viewed by executing the following command:

$ kubectl get statefulset -n argocd

NAME READY AGE

argocd-application-controller 1/1 66m

View the pods associated with this StatefulSet:

$ kubectl get pods -n argocd -l app.kubernetes.io/component=application-

controller

NAME READY STATUS RESTARTS AGE

argocd-application-controller-0 1/1 Running 0 66m

The 0 not only denotes the ID of this Pod for the
StatefulSet, but it’s also used by Argo CD to identify
shards. Currently, since there’s only one Application
controller pod, all Argo CD Application operations are
being handled by this one resource. And, if you recall, we
added a cluster in Chapter 7, so you can see which shard is
being used for these operations:

$ argocd admin cluster stats -n argocd

SERVER SHARD CONNECTION NAMESPACES COUNT APPS

COUNT ...

https://192.168.4.134:60183 0 1 0

...

https://kubernetes.default.svc 0 4 0

...

NOTE

The IP of your cluster, and list above, may be different.

To add additional shards, you scale up the replicas and
mirror that configuration with the
ARGOCD_CONTROLLER_REPLICAS environment variable in the
Application controller StatefulSet. This can be
accomplished easily with the Helm chart. Taking a look at
the values found in the ch13/helm/values/argocd-sharding-

values.yaml file in the accompanying Git repository, you
should see the following:

controller:

 replicas: 2

That’s it! Using Helm with the provided values file, you can
enable sharding with the following command:

$ helm upgrade -i argocd -n argocd --reuse-values \

--values ch13/helm/values/argocd-sharding-values.yaml argo/argo-cd

This should have scaled the StatefulSet to two replicas:

$ kubectl get sts -n argocd

NAME READY AGE

argocd-application-controller 2/2 129m

Checking the pods, you should have a pod with a 0 and
another with a 1:

$ kubectl get pods -n argocd -l app.kubernetes.io/component=application-

controller

NAME READY STATUS RESTARTS AGE

argocd-application-controller-0 1/1 Running 0 3m5s

argocd-application-controller-1 1/1 Running 0 3m15s

This corresponds to shard 0 and shard 1, respectively.
Taking a look at the clusters and shards, you will notice
that both clusters are still being managed by shard 0:

$ argocd admin cluster stats -n argocd

SERVER SHARD CONNECTION NAMESPACES COUNT APPS

COUNT ...

https://192.168.4.134:60183 0 1 0

...

https://kubernetes.default.svc 0 4 0

...

Since we are using the legacy algorithm, the algorithm
chooses the shard based on a hash of the UID, which is
then assigned based on the modulo of that hash. As your
implementation grows more and more as you add clusters,
you will notice that this method creates an “imbalance,”
and “hot spots” (where one shard is doing more work than
the others) can occur. To remedy this, it’s recommended to
assign shards to clusters.
In Chapter 7, you learned that cluster definitions are stored
as Kubernetes Secrets. In order to assign a shard to a
cluster, you update the cluster secret with the shard ID by
adding the data.shard field in the secret with the
corresponding shard ID.
Taking a look at the cluster that was added, we’ll need the
name:

$ kubectl get secrets -n argocd -l argocd.argoproj.io/secret-type=cluster

NAME TYPE DATA AGE

remote Opaque 3 154m

Add the data.shard field in the secret by patching the Secret
using stringData and the value of 1:

$ kubectl patch secret remote -n argocd --patch '{"stringData":{"shard":"1"}}'

You can verify this by again listing which shard is
managing which cluster. You will see that shard 1 is now
managing the cluster:

$ argocd admin cluster stats -n argocd

SERVER SHARD CONNECTION NAMESPACES COUNT APPS

COUNT ...

https://192.168.4.134:60183 1 1 0

...

https://kubernetes.default.svc 0 4 0

...

The default behavior is that the defined shard will be used
for Argo CD Application operations unless the shard pod
goes away. The default timeout for checking the shard
health is 10 seconds. Each controller replica is trying to
“claim” the shard (by updating the field in a config map),
“holds” it for 10 seconds, and must renew before the hold
expires. So, if one replica dies, then another replica will
pick up a shard at least 10 seconds later. To change the
default 10-second timeout, you can change the value of
controller.heartbeatTime to your desired timeout in your
values file.
It’s recommended that you treat shard-to-cluster ratios in a
1:1 relationship on very busy systems. Another method is to
have two to three shards handling all your preprod
environments and have dedicated shards for each cluster in

your prod environment. In the end, you will have to use
data collected from monitoring Argo CD to determine
which direction you ultimately head toward.

Summary

Operationalizing Argo CD in an enterprise environment is
crucial for ensuring robust and efficient deployments
within a Kubernetes ecosystem. Integrating monitoring
capabilities with tools, like Prometheus and Grafana,
provides insights into deployment status and health,
enabling swift detection and resolution of issues. This
integration offers a comprehensive view beyond Argo CD’s
native interface, allowing for proactive issue detection,
efficient troubleshooting, and informed decision-making.
Coupled with notifications, stakeholders are immediately
informed of changes or problems, ensuring prompt
responses and mitigating downtime. High availability and
scalability further enhance Argo CD’s reliability and
capacity to manage increasing applications and clusters as
the adoption grows.

Chapter 14. Future

Considerations

Throughout this book, we have focused on the general
operationalization of Argo CD, including deploying,
configuring, and managing the application. While we
touched on several different technologies and practices, the
ecosystem surrounding Argo CD is much broader, and
other considerations will need to be taken into account as
you progress through your Argo CD journey. This
ecosystem is still evolving, and many patterns are
emerging, so it is important to know how to engage with
the community and investigate new practices, patterns, and
common approaches.
This chapter will provide the context and resources you
need to get the most out of your Argo CD implementation—
both now and in the future.

GitOps Is Still Evolving

While operationalizing Argo CD is an important topic, it is
imperative to recognize that Argo CD was built with GitOps
at its core. This alignment necessitates that any effort to
operationalize Argo CD should inherently incorporate
GitOps best practices and strategic pattern planning to
maximize the efficiency and effectiveness of any Argo CD
implementation. To achieve optimal results, it is essential
to consider the broader implications of GitOps to better
integrate it with DevOps. This will contribute significantly
to the robustness of your Argo CD implementation.

While the GitOps principles have reached v1.0, patterns
and implementations are still evolving; best practices are
emerging as adoption grows for not only Argo CD, but
GitOps in general. Whether you are new to Argo CD and
GitOps or are already running it in production, it’s always
good to see what patterns organizations are using to make
the most of their approaches. In this section, we will be
highlighting some of the emerging patterns and best
practices, including what to consider when structuring your
GitOps directory, rendered manifest patterns, and GitOps
workflows. Understanding these can take your Argo CD
and GitOps journey to the next level.

GitOps Directory Structure Considerations

One of the initial hurdles organizations must face when
adopting GitOps is deciding how to best organize their Git
directory structure. Since Git has become the interface for
how an organization interacts with important application
deployments and infrastructure management concerns, it is
imperative that these fundamental design concerns are
addressed upfront. With this in mind, there isn’t,
unfortunately, a one-size-fits-all solution or universally
accepted repository layout. The central theme around the
structure of a GitOps directory has a lot to do with
Conway’s law, which states (adapted from the original
wording):

Any organization that designs a system (defined broadly)

will produce a design whose structure is a copy of the

organization’s communication structure.

—Melvin E. Conway
In short, how your organization and/or team is structured
will dictate how your directory structure is implemented,

https://opengitops.dev/

and not the other way around. Organizational boundaries
and separation of responsibilities will also have a large
influence on your GitOps directory structure
implementation.
Keeping Conway’s law in mind, if you find your directory
structure isn’t working for you, you either need to change
your directory structure or change your
communication/interaction structure in your organization
(the former is typically much easier). Even though there is
no generic GitOps directory structure that works for all,
there are some general guidelines that you can follow to
make the most of your implementation.

The DRY approach

When structuring directories, you want to follow the same
programming principles as you do in the infrastructure-as-
code realm of GitOps. You should avoid applying redundant
actions and instead make use of the practice of DRY, which
stands for “Don’t repeat yourself.” Since the focus of this
book has been centered on Argo CD and Kubernetes, you
can think of the “Y” in DRY as standing for YAML.
It’s possible that storing everything in Git can lead to the
same YAML being repeated because similar workloads are
deployed across multiple environments. However, you can
avoid repeating a lot of the same YAML by using
configuration management tools. This will keep your
repository clean and easy to understand and avoids any
unnecessary duplication of manifests.
There are many to choose from, but we recommend using
Kustomize and/or Helm since Argo CD has native support
for these two tools. They will help you to keep the base
configuration of your deployment and then store the deltas
as patched overlays (in the case of Kustomize) or different

values files (in the case of Helm). Since Argo CD has
support for config management plugins (as covered in
Chapter 11), the configuration management tool you use
does not matter as long as you follow the DRY principle.

Parameterize where you can

While Kustomize is a popular choice, and is also supported
natively with Argo CD, it is important to note that there are
certain situations where patching manifests with Kustomize
does not make sense. Although patching YAML is easy
when you already know the values beforehand, there are
occasions when you will not know the desired value that
should be specified. In many cases, this is due to details
related to the destination of the manifests.
An example of this situation can be found with the host
field in an Ingress object, which specifies the fully qualified
domain name (FQDN) that can be used to access an
application available within the cluster. The challenge
comes to a head when you’re deploying across a fleet of
Kubernetes clusters with varying FQDNs that you may not
know until deployment time.
This is where parameterizing your configurations provides
the greatest benefit and where Helm truly shines. It is also
the primary reason why Helm was chosen as the tool of
choice in this book. Helm allows you to parameterize
certain fields and abstracts away a lot of nuances of
Kubernetes manifests, which is attractive if you’re running
a multi-tenant system where developers just want to focus
on getting their applications deployed. In reality, you will
most likely use a combination of Kustomize and Helm.
Utilizing the best of both tools, you should be able to limit
the amount of manifest duplication in your GitOps
deployments.

How many repositories are needed?

The most common best practice is to separate your
deployment manifests away from the same repository that
the source code of your application lives in. There are many
resources on this topic, but generally speaking, this
principle exists because application and GitOps
configurations typically have different lifecycles and are (in
many instances) managed completely differently by
different teams. So, as a general practice, it is
recommended that each be kept separate in their own
management process and structure.
But how many repositories are the right amount?
Some organizations store everything in what we call a
monolithic repo (monorepo). A monorepo is where all
Kubernetes manifests reside in a single repository for an
organization. This is usually where organizations start, and
there is typically a heavy emphasis on Kustomize in these
repositories. The advantage of using a monorepo is that all
the resources are managed centrally, and there is a single
point of governance and management interface. However,
there is a drawback, which is that Argo CD struggles, with
respect to performance, with large monorepos. This is a
known limit within Argo CD, which ultimately leads many
organizations to favor polyrepos, which will be covered
next. Those that do leverage a monorepo architecture for
their GitOps manifests have to trade simplicity with a need
to scale and tune the performance of Argo CD in order to
achieve operational stability. Scaling and tuning Argo CD
was covered in Chapter 13.
Polyrepos, as the name indicates, is the use of more than
one repository to manage GitOps application
deployment(s). Beyond that, they have a singular or siloed

responsibility, and components from them can work with
other repositories across the ecosystem. The most common
starting point for organizations adopting GitOps with Argo
CD is to have a control plane repository and an application
deployment repository. A control plane repository stores
resources needed to manage Argo CD itself. These include
assets like (but not limited to) Argo CD AppProjects,
Applications, Argo CD–specific Secrets, and ConfigMaps. In
addition, the control plane repository is also used to store
other supporting tools needed for organizational policies
and governance—for example, manifests related to tools,
like Kyverno, Istio, and External Secrets (to name a few).
This repository is typically managed by a platform
engineering or DevOps team, whereas the application
deployment repository, in contrast, is used to store the
actual application manifests used by Kubernetes. Those
normally contain resources such as Deployments, Secrets,
ConfigMaps, Ingress, and other related manifests. While
most organizations start at two repositories, your case
might be different and, in most cases, will include more
than two. The number of repositories will increase
depending on the separation of concerns and/or
organizational boundaries that might exist. The main
drawback for using this pattern is that it creates a large
number of Git repositories, each having their own release
process that needs to be coordinated. Still, the use of
polyrepos is a popular approach, and it’s the method used
by Intuit (the creators of the Argo Project).

Directory structure resources

As mentioned before, your Git repository structure will
depend heavily on how your organization runs, is governed,
and how it communicates with disparate teams. The
repositories created will be a reflection of that fact.

Another thing to take into consideration is how your
current deployment + CI/CD workflow is implemented. This
all makes logical sense when you start thinking about who
has access to what resource. Developers will not need to
modify platform configurations, and operators, who work
on platforms, normally won’t make changes in the source
code of development teams.
Since aspiring to a single, general template GitOps
repository structure is not feasible, and the answer will
eventually result in “it depends,” there are an assortment
of examples that you can use to influence your approach.
These also include several getting-started structures that
provide a good foundation to build from:
Christian Hernandez’s (Akuity and coauthor of this book)

GitOps 1:1 Repo

This repository outlines a 1:1, or repository to cluster, layout.
This example can be expanded to be used as a monorepo or
as a basis for a polyrepo.

Gerald Nunn’s (Red Hat) GitOps Standards

This repository illustrates the use of Gerald’s GitOps
standards, which is designed from his experiences working
with his clients. It provides an example repository layout
that includes how to handle multiple clusters using a
monorepo design architecture.

Johannes Schnatterer (Cloudogu GmbH), “GitOps

Repository Structures and Patterns”

This blog describes the pros and cons of implementing a
repo per team versus a repo for application approach and

https://oreil.ly/-b9mt
https://oreil.ly/_NRX-
https://oreil.ly/sJZAn

other important, related considerations with examples.

The GitOps Bridge Project

This project aims to unify infrastructure management with
GitOps application deployment practices by providing a
generic framework for building cloud infrastructure and
using cloud metadata to enhance the GitOps controller (like
Argo CD).

Flux, “Ways of Structuring Your Repositories”

Although this article is focused solely on Argo CD, Flux CD
has wide adoption and thus, a number of best practices of its
own. Many of these can be used generally, regardless of
which tool is being used, so it’s worth taking a look at
through the lens of Argo CD.

With these examples, you’ll get a better sense of a good
starting-off point for setting up your GitOps repositories.

Rendered Manifests Pattern

Earlier in this section, we covered how to use the DRY
method for managing Kubernetes manifests in a GitOps
repository. This included suggestions around using
configuration management tools to aid in keeping your
manifests DRY. While the choice of configuration
management tools has minimal impact on the
implementation of GitOps, there exists a challenge with
having that abstraction.

https://oreil.ly/kl8id
https://oreil.ly/aDoHN

Argo CD (and other GitOps tools) typically reference these
abstractions, which keep your manifests DRY, directly in
order to determine the desired state of your system. As a
result, any modification made via your configuration
management tool (like Kustomize or Helm) gets altered by
Argo CD itself, making the actual impact on the manifests
deployed across environments ambiguous. Within the realm
of Argo CD, the tool mutates the desired state manifests
prior to applying them onto the destination cluster during
deployment time. This process is depicted in Figure 14-1.

Figure 14-1. Argo CD rendering at deployment time

While this is a completely valid approach, some
organizations found challenges in having the source of
truth being mutated by Argo CD before being applied to the
destination cluster. The primary challenge is diffing and
knowing the impact of a change before the manifests are
deployed onto the destination. Take, for example, modifying
a Helm configuration (like an umbrella chart) for
Prometheus:

$ diff new-Chart.yaml Chart.yaml

8c8

< version: 58.6.1

> version: 61.9.0

Seeing this, you instinctively know that this is a major
version change that most likely has large implications. But,
seeing this difference (diff), either in the command line or
in a pull request, does not show the full extent that this
change will cause. In contrast, the full diff illustrates the
major changes that this one line change can cause. The diff
is so large, that we had to create a Gist to show it all.
Because of this challenge, a pattern arose in the GitOps
community called the rendered manifests pattern

(sometimes called hydrated manifests). The most important
tenet of the rendered manifest pattern is that the desired
state, which in most cases is stored in Git, should contain
no ambiguity from what will be applied by Argo CD. It
should be thought of similarly to a container image, where
it’s immutable and applied as is.
These rendered manifests are to be stored into
environment-specific branches. As updates are introduced
in these branches, the diff in the manifests between
commits will be completely transparent. Changes are
visible, and they are clear along with effects that will be
made on each environment. Figure 14-2 depicts the entire
process.

Figure 14-2. Rendered manifests workflow

https://oreil.ly/2Y-t4

The rendered manifests pattern offers several key
advantages, including enhanced visibility into the desired
state by eliminating the obfuscation typically introduced by
configuration management tools. It also reduces risk by
establishing a truly immutable desired state and greatly
improves the performance of Argo CD by removing the
need for Argo CD to perform the rendering. Additionally,
this pattern allows for the setting of deployment and
protection policies tailored to specific environments since
they will be stored in specific branches. However, there are
two notable drawbacks: shifting manifest rendering to the
CI engine introduces additional complexity, and this
approach is less effective with tools that render plain-text
secrets, such as sealed secrets.
There are tools that can help remove the complexity of
introducing the rendered manifests pattern into your CI
system, and we’ll review them later in this chapter. It’s
worth mentioning that many GitOps practitioners mistake
the rendered manifests pattern with GitOps workflows
(which will be covered in the next section). It’s important to
note that the rendered manifests pattern is a method to
create a deployment bundle in the branch. Branches are
used as a vehicle to store the resulting deployment bundle
and do not require merging between one another.

GitOps Workflow Best Practices

Git workflows (also called Git Flows) have long been
integral to application development and have become the
de facto industry standard for both development and
deployment processes. With the rise of GitOps and the
growing popularity of infrastructure as code, Git now
serves not only as the source of truth but also as the
primary interface for managing environments. These

workflows are well-known in development, and operational
teams are increasingly adopting similar practices as well.
Naturally, many organizations are inclined to implement
Git Flow, given its long-standing role as the default
process. However, there are important distinctions
between managing application code and managing a
GitOps repository.

Separation of concerns

One of the key challenges organizations encounter is how
to manage the code that powers their application
separately from the manifests that deploy them. The
solution is quite simple: keep them separate.
While many organizations utilize Git Flow for application
development, a growing number of DevOps engineers are
adopting trunk-based development for their GitOps
repositories. These are two fundamentally different
workflows, which can lead to complications. For example, a
simple update, like adjusting the replica count of a
deployment—where the underlying code remains
unchanged—can unnecessarily trigger a rebuild and
retesting of a codebase that is already in production.
Additionally, the approval process for environment changes
differs from that for code changes and should not impede
the continuous integration process for developers.
This is a key reason for maintaining separation. Trunk-
based development is significantly better aligned with
GitOps workflows and repositories. Therefore, it is
advisable to adopt trunk-based development for GitOps,
irrespective of the development process used for the
application itself.

Merging strategy

When implementing GitOps, it’s essential to move away
from traditional Git Flow practices, especially for managing
environment-specific configurations. While Git Flow is well-
suited for application development, its approach favoring
long-lived branches and merging changes between
branches doesn’t align with the needs of a GitOps
workflow.
One of the critical shifts organizations must make is to
avoid using long-lived branches to manage environments.
In a GitOps context, you are handling the promotion of
manifests, not source code. Environment-specific
configurations—like Secrets and ConfigMaps—are often
unique and shouldn’t be merged across environments.
Using Git Flow for this purpose can lead to significant
complications, such as the need to cherry-pick changes,
which can become cumbersome and error-prone. Instead,
adopting trunk-based development, combined with tools
like Kustomize and Helm, allows for a more streamlined
and efficient GitOps workflow.
Keeping rendered manifests in mind, it’s important to note
that this approach enables you to still maintain a single
source of truth on the main branch, with environment-
specific configurations managed through automated
workflows. Although tendered manifests may utilize
branches, these are not used for promotion between
environments. Instead, they act as release artifacts,
generated automatically from the main branch and not
directly modified by contributors.
In essence, while the rendered manifests pattern may
superficially resemble Git Flow, it fundamentally differs in
practice. By embracing trunk-based development and
leveraging templating tools, you can simplify your GitOps

processes and avoid the pitfalls of traditional Git Flow in an
infrastructure context.

Interacting with the Community

The landscape surrounding GitOps and Argo CD is
continually evolving, with new methods and practices
emerging regularly. While this book aims to cover the
fundamental approaches necessary for implementing these
technologies, it cannot predict future developments.
Therefore, it is crucial to stay informed about ongoing
community activities and actively participate in these
groups in order to maximize the effectiveness of your
implementation.

Slack

The Argo Project is part of the larger Cloud Native
Computing Foundation (CNCF), and as such, the best place
to get involved in the project, ask questions, or share any
information is the CNCF Slack workspace. This Slack
workspace is open to the general public and is the
recommended way to get started with contributions and
interactions. You can obtain an invitation by visiting the
CNCF website.
Once you have access to the Slack workspace, the following
Argo Project-specific channels are listed on the Argo
Project website.
While the CNCF projects reside in the CNCF Slack
workspace, the Kubernetes community (and any related
toolsets) can be found by requesting access at
https://slack.k8s.io. The channels that are related to Argo
CD and GitOps in general are:

https://slack.cncf.io/
https://oreil.ly/cqR9t
https://slack.k8s.io/

#kustomize

#helm-users and #helm-dev

#gitops

#kind

If you are interested in attending Argo Project meetings
where you can engage with engineers and solicit feedback,
you can find meeting times and information on how to join
by visiting the Argo Project meeting calendar.

GitHub

The Argo Project was donated as a suite of cloud native
DevOps tools and can therefore be thought of as more of an
ecosystem. To that end, the best place on GitHub to
become familiar with this ecosystem is the Argo Project
GitHub organization.
The source code repository for Argo CD can be found in the
Argo Project organization, and it contains all of the
contributions, issues, and requests for enhancements.
The Argo Project CNCF status is officially in a “graduated”
state. Graduated projects and tools are considered, by the
CNCF, to be stable and are used successfully in production
environments. This designation is significant because any
of the toolsets in the Argo Project are also considered
graduated (currently, these include Argo Workflows, Argo
CD, Argo Rollouts, and Argo Events). The ecosystem of the
Argo Project goes beyond the four graduated tools;
therefore, the Argo Project Labs organization was created
and can be found by visiting the associated GitHub
organization.

https://bit.ly/argoproj-calendar
https://github.com/argoproj
https://github.com/argoproj-labs

The Argo Project labs organization is managed by the Argo
Project maintainers, and not part of the CNCF Argo
umbrella projects. New repositories in this organization
need to be sponsored and created by one of the Argo
project maintainers. Although not holding any official

standing in the CNCF, tools in the Argo Project labs
organization aren’t necessarily “unsupported.” The goal of
the organization is to have a place to collaborate with the
community to quickly run experiments, proof of concepts
(POCs), and possibly new features to be later incorporated
in one of the Argo Projects.

Next Steps

Outside of Argo CD and GitOps, there are other
considerations to take into account when implementing
these tools and practices in your CI/CD and IaC workflows.
We’ve touched on a few throughout this book; still, there
are other considerations that are important for the full
success of your implementation.

Progressive Delivery

Progressive delivery refers to the controlled and
incremental release of product updates, aimed at
minimizing the risks associated with deployments. This
approach typically leverages automation and metric
analysis to facilitate the programmatic promotion or
rollback of updates based on observed performance. While
delving into the finer details of progressive delivery is
outside the scope of this book, it’s important to highlight
the solutions available for Argo CD users.
Often viewed as an advancement of continuous delivery,
progressive delivery builds upon the velocity achieved in

CI/CD by enhancing the deployment process. It achieves
this by initially limiting the exposure of the new version to
a select group of users. Through continuous observation
and analysis, the new version is gradually introduced to a
broader audience, with ongoing verification to ensure
correct behavior at each stage.
There are two common strategies for implementing
progressive delivery, and all variations can be seen as a
subset of the two. The first strategy uses blue–green
deployments, which involve deploying both the new version
in addition to the existing version of an application. This
allows tests to be conducted on the new version in a
controlled manner. The second strategy involves canary
deployments, which introduce the new version of an
application to a small subset of users while the majority of
users continue to use the existing version. This approach
allows for monitoring the new version to collect data. Once
validated, the new version is progressively rolled out to the
entire user base, replacing the old version.
Argo CD doesn’t perform progressive delivery of any kind
and relies on the end user to use another tool or process to
perform a progressive delivery. This was briefly touched on
in Chapter 1, Introduction to Argo CD. The Argo Project
has a complementary tool called Argo Rollouts, which
focuses on providing a common interface to perform
progressive delivery. It can be used as a standalone or
integrated directly with Argo CD. Argo Rollouts features
methods for declaratively performing progressive delivery,
independent of your traffic provider (Istio, NGINX, Traefik,
etc.).
While Argo Rollouts is not required to achieve progressive
delivery, it is a recommended tool for users looking for a
progressive delivery solution that complements Argo CD

and that can still be used with existing traffic managers.
For more information, visit the Argo Rollouts website.

GitOps Promotions

Initially, GitOps promotions (performing updates when a
new version is introduced) are seemingly inconsequential,
but they can provide a lot of value. Most workflows consist
of using CI to generate new manifests, writing those
changes into a feature branch, and creating a PR to the
branch that is being tracked by Argo CD. Eventually, as
adoption of GitOps grows and as microservices continue to
gain in popularity, there comes an issue with orchestrating
independent services with their own GitOps workflow into
an application stack release. This leads many to fall back to
using CI scripts to try and orchestrate a release on these
systems and workflow in order to perform a release using
GitOps principles. While going further into the challenges
of GitOps promotions is beyond the scope of this book, it’s
important to know what solutions are available to help you
in your GitOps promotion implementation.
The Argo Project labs organization has a tool called the
Argo CD Image Updater. The aim is to aid administrators in
GitOps promotion by detecting image updates and
committing those changes back to a GitOps Git repository
automatically. This tool focuses on detecting image updates
only and can be seen as a spot feature. More information
can be found by visiting Argo CD Image Updater.
A more holistic proposal for Argo CD GitOps promotions
can be found in the Argo CD repository, which focuses on
detecting Git commits as well. You can track the progress
of this proposal by visiting its GitHub page.

https://oreil.ly/A_Sz0
https://oreil.ly/qBcCh
https://oreil.ly/xq7L4

Kargo is an open source project started by the original
creators of the Argo Project, who are now at Akuity, and
takes a more holistic approach to GitOps promotions by
focusing on tracking updates from various GitOps-related
repositories, like Git, Helm, and Image repositories. A user
can track one or more related supported repositories and
orchestrate related Git commits based on rulesets (which
are set by the user). Kargo aims to help, generically,
orchestrate and promote applications in a GitOps-friendly
way. You can find out more by visiting the Kargo website.
Telefonistka is an open source tool developed by Wayfair
engineers to enable safe and controlled GitOps promotions
across multiple environments. It ensures consistent
deployments by securely managing environment
promotions through automation. By establishing predefined
directory structures, Telefonistka detects changes in your
Git repository and automatically creates pull requests to
the relevant tracked branches. Once the user approves
these changes, synchronization occurs with the GitOps
controller of choice, minimizing deployment risks. You can
find out more information by visiting the Telefonistka
GitHub repository.

Summary

This chapter has explored the deployment, configuration,
and management of Argo CD, emphasizing the importance
of integrating GitOps best practices to optimize
implementation. As GitOps is still evolving, new patterns
and practices are continually emerging, necessitating
community engagement and exploration of these
advancements. Key areas include GitOps directory
structures, where organizational design influences

https://akuity.io/
https://kargo.akuity.io/
https://oreil.ly/d0nd4

repository layout; the DRY principle for avoiding YAML
duplication; and parameterization of configurations, with
tools like Kustomize and Helm. This chapter also discussed
repository management strategies, distinguishing between
monorepo and polyrepo approaches, and highlighted the
rendered manifests pattern for clearer, immutable
deployment states. Additionally, it contrasted GitOps
workflows with traditional Git Flow, recommending trunk-
based development for GitOps repositories. To stay updated
with the latest practices and tools, community involvement
through channels like CNCF Slack and GitHub is
encouraged. Finally, the chapter touched on progressive
delivery strategies and tools for GitOps promotions, such as
Argo Rollouts and Kargo, to enhance deployment
processes.
And with that, you’ve made it! There was a lot of
information and implementation details that went into
writing this book, and the fact that you’ve made it to the
end makes us very grateful. We’d like to thank you for
taking the time to read this book, and we are happy that
you decided to take us on your journey in implementing
GitOps with Argo CD. While we strived to make this book
work 80% of the time for most organizations; there is no
way to account for every single situation. Therefore, we
recommend using this book as a reference guide and less
as an end-to-end implementation.
One final note: it’s worth reiterating that the Argo and
GitOps communities are your best resources to not only
gain feedback, find validated patterns, and get advice, but
also they are a place where we urge you to share your
successes and implementation strategies. You may find that
certain patterns work fantastically for you while others do
not. Or you may find some solutions/patterns that work

well for you that aren’t talked about too often. In sharing
your journey, you can help those that may be just starting
theirs.
With that, we’ll leave you with a quote:

I often compare open source to science. To where science

took this whole notion of developing ideas in the open

and improving on other peoples’ ideas and making it into

what science is today and the incredible advances that

we have had.

—Linus Torvalds, creator for the Linux Kernel

Index

Symbols

! for denying resources, Resource Management

$HOMEDIR, The Argo CD Command-Line Interface (CLI)

$PATH, Helm

A

admin role in role-based access control, Argo CD RBAC
Basics

admin user, The Admin User
– about, Managing Users

– disabling account, Disabling users, Securing Argo CD

– login and password, Deploying Argo CD using YAML
manifests, The User Interface in Depth

– changing default password, The Argo CD
Command-Line Interface (CLI), The Admin User,
Securing Argo CD

– obtaining admin password, The Admin User

anonymous access in RBAC, Anonymous Access

API (Argo CD)
– CLI leveraging, The Argo CD Command-Line Interface

(CLI), Additional Methods for Managing Argo CD

– managing Argo CD, Additional Methods for Managing
Argo CD-Additional Methods for Managing Argo CD

– OpenAPI specification, Additional Methods for
Managing Argo CD

– Swagger UI for visualizing, Additional Methods for
Managing Argo CD

– REST based, Additional Methods for Managing Argo CD

– UI, Additional Methods for Managing Argo CD

API (Kubernetes)
– exposing endpoint, Creating a Cluster

– health status metric, Importance of Probes

API server (Argo CD), API server
– gRPC/REST-based server, API server

App-of-Apps pattern, App-of-Apps Pattern, Use Case: App-
of-Apps with Sync Waves

– Progressive Sync using one manifest, Use Case: Using
Progressive Sync

– use case with sync waves, Use Case: App-of-Apps with
Sync Waves-Use Case: App-of-Apps with Sync Waves

– about setup, Use Case Setup

– Argo CD health check setup, Adding Argo CD
Health Checks

– probe setup, Inspecting Probes

Application controller (Argo CD), Custom resources
– restarting, Enable Sync with Impersonation

– sharding, Sharding-Sharding
– Application controller replicas setting, High

Availability, Sharding

application deployment repository, How many repositories
are needed?

application-level diffing, Application-Level Diffing

Applications (Argo CD)
– about, Unifying Application Definitions, Managing

Applications, Applications at Scale

– App-of-Apps pattern, App-of-Apps Pattern
– Progressive Sync using one manifest, Use Case:

Using Progressive Sync

– use case with sync waves, Use Case Setup-Use
Case: App-of-Apps with Sync Waves

– Application specification online, Deploying Applications
to Multiple Clusters

– autonomous and without dependencies, Argo CD
Application Drawbacks

– Progressive Sync for dependencies, Progressive
Sync

– Progressive Sync use case, Use Case: Using
Progressive Sync-Use Case: Using Progressive Sync

– best practices
– Application health, Application Health

– Argo CD health checks, Argo CD Health Checks

– probes, Set Up Probes

– configuration drift management, Configuration Drift,
Kubernetes Controller Pattern

– as Custom Resource Definition objects, Managing
Applications, Application Sources, Applications at
Scale, Use Case: App-of-Apps with Sync Waves

– dashboard showing registered applications, Deploying
Argo CD using YAML manifests

– deleting, Deleting Applications-Finalizers, Use Case:
Using Progressive Sync

– finalizers, Deleting Applications, Use Case: Using
Progressive Sync

– deploying first Application, Deploying Your First
Application-Deploying Your First Application

– deploying to Argo CD install cluster, Cluster
Management

– (see also deployments)

– deploying to multiple clusters, Deploying Applications
to Multiple Clusters-ApplicationSets

– about, Deploying Applications to Multiple Clusters

– App-of-Apps pattern, App-of-Apps Pattern

– ApplicationSets, ApplicationSets-ApplicationSets

– Helm, Using Helm

– destinations, Destinations

– in-cluster keyword, Deploying Your First
Application

– .spec.destination, Application Overview,
Destinations

– drawbacks, Argo CD Application Drawbacks-Argo CD
Application Drawbacks

– creation “factory” (see ApplicationSets (Argo CD))

– generators, ApplicationSets

– health checks, Application Health
– database schema setup use case, Seeing It in

Action-Seeing It in Action

– health status from Kubernetes API, Importance of
Probes

– importance of probes, Importance of Probes, Set
Up Probes

– removed from Argo CD, Application Health

– sync compare-options annotation, Comparing
Options

– sync waves at their best, Sync Waves

– listing clusters managed by Argo CD, Destinations

– overview of an Application, Application Overview-
Application Overview

– namespace, Application Overview

– options available listed online, Application
Overview

– .spec.destination, Application Overview,
Destinations

– .spec.source, Application Overview, Application
Sources

– restarting the Application controller, Enable Sync with
Impersonation

– retries for eventual consistency, Eventual Consistency

– sources, Application Sources
– Git as source, Application Sources, Git

– Helm as source, Application Sources, Helm

– more than one source, Application Sources

– .spec.source, Application Overview, Application
Sources

– status check via argocd CLI, Repository Access

– synchronization
– automated synchronization, Managing How

Applications Are Synchronized

– compare-options annotation, Comparing Options

– hook deletion policies, Manifest Sync Wave
Overview

– hooks, Hooks

– hooks idempotent, Manifest Sync Wave Overview

– hooks with sync waves, Sync Waves, Manifest Sync
Wave Overview

– ignoreDifferences annotation, Managing Resource
Differences

– ignoreDifferences on application level, Application-
Level Diffing

– ignoreDifferences on system level, System-Level
Diffing

– initiating manually, Managing How Applications
Are Synchronized

– managing how Applications synchronized,
Managing How Applications Are Synchronized

– order of synchronization, Sync Order and Hooks,
Sync Waves-Sync Waves

– Progressive Sync, Progressive Sync, Use Case:
Using Progressive Sync

– Progressive Sync use case, Use Case: Using
Progressive Sync-Use Case: Using Progressive Sync

– sync waves, Sync Waves-Sync Waves, Argo CD
Application Drawbacks

– sync waves in database use case, Manifest Sync
Wave Overview-Manifest Sync Wave Overview

– syncOptions, Sync Options

– syncOptions at Application level, Application-Level
Options

– syncOptions at resource level, Resource-Level
Options

– syncOptions in first deployed Application,
Deploying Your First Application

– syncPolicy for automated synchronization,
Managing How Applications Are Synchronized

– syncPolicy in database schema use case, Argo CD
Application Overview

– syncPolicy in first deployed Application, Deploying
Your First Application

– use case of database schema setup, Use Case:
Database Schema Setup-Seeing It in Action

– synchronization impersonation, Application Sync
Impersonation-Deploying an Application with
Impersonation

– about, Application Sync Impersonation

– deploying an Application with impersonation,
Deploying an Application with Impersonation

– enabling, Enable Sync with Impersonation

– service account, Define the Service Account to Use
for Impersonation

– tools for management, Tools-Beyond Helm and
Kustomize

– about, Tools

– beyond Helm and Kustomize, Beyond Helm and
Kustomize

– Helm, Helm

– Kustomize, Kustomize

ApplicationSets (Argo CD), ApplicationSets-
ApplicationSets, ApplicationSets

– ApplicationSet controller, Custom resources,
ApplicationSets

– restarting, Use Case: Using Progressive Sync

– Progressive Synchronization, Progressive Sync-Use
Case: Using Progressive Sync

– alpha feature, Progressive Sync

– use case, Use Case: Using Progressive Sync-Use
Case: Using Progressive Sync

AppProject CRD controlling Projects, Namespace Scoped

AppProjects (Argo CD), Projects

architecture of Argo CD, Argo CD Architecture-Argo CD
Key Patterns

– about, Installing Argo CD

– cluster credentials in Kubernetes Secret, How Clusters
Are Defined

– key patterns, Argo CD Key Patterns

– Kubernetes controller pattern, Kubernetes Controller
Pattern-Kubernetes Controller Pattern

– Custom Resource Definitions, Kubernetes
Controller Pattern, Custom resources

– Deployment example, Kubernetes Controller
Pattern

– operators, Kubernetes Controller Pattern

– overview, Argo CD Architecture Overview-Notifications

– stateless, Argo CD Key Patterns

architecture of clusters, Cluster Architecture-How Clusters
Are Defined

– cluster definition options online, How Clusters Are
Defined

– how clusters are defined, How Clusters Are Defined-
How Clusters Are Defined

– hub-and-spoke design, Hub-and-Spoke Design

– local versus remote clusters, Local Versus Remote
Clusters

Argo CD
– about, Preface, Why We Wrote This Book, Argo CD

Architecture

– adoption by DevOps professionals, Why Argo CD?

– Application as atomic working unit, Application
Overview

– (see also Applications (Argo CD))

– Argo Project component, The Argo Ecosystem

– argocd CLI client, Argo CD CLI Client
– (see also argocd CLI client)

– community, Interacting with the Community
– GitHub, GitHub

– Slack, Slack

– configuration, Kubernetes Controller Pattern
– (see also configuration of Argo CD)

– declarative expression of GitOps desired state,
Principle 1: Declarative, Argo CD Architecture

– declarative configuration, Interacting with Argo
CD, Additional Methods for Managing Argo CD

– monitoring and synchronizing source of truth,
Reconciliation Response Time

– description of, What Is Argo CD?-Rollback and Disaster
Recovery

– documentation online
– CLI client installation instructions, The Argo CD

Command-Line Interface (CLI)

– cluster definition options, How Clusters Are
Defined

– health checks by Argo CD, Argo CD Health Checks

– health checks by Argo CD that are built in, Argo CD
Health Checks

– health checks for Applications removed, Application
Health

– Helm use, Using Helm

– hook deletion policy, Manifest Sync Wave Overview

– synchronizing Applications, Managing How
Applications Are Synchronized

– system-level diffing, System-Level Diffing

– extending (see extending Argo CD)

– Flux versus, Comparison of GitOps Tools in the
Ecosystem

– health checks by, Argo CD Health Checks
– App-of-Apps with sync waves use case, Adding Argo

CD Health Checks

– current built-in checks online, Argo CD Health
Checks

– customizing, Argo CD Health Checks

– documentation online, Argo CD Health Checks

– enabling, Adding Argo CD Health Checks

– written in Lua, Argo CD Health Checks

– installation modes, Installation Types, Argo CD
Installation Modes

– cluster scoped, Installation Types, Cluster Scoped

– installing Argo CD (see installing Argo CD)

– namespace scoped, Installation Types, Namespace
Scoped

– monorepo struggles, How many repositories are
needed?

– operationalizing (see operationalizing Argo CD)

– React based, UI Extensions

– securing server, Securing Argo CD-Securing Argo CD
– (see also security)

– source code repository, GitHub

– UI, The User Interface in Depth-The User Interface in
Depth

– (see also CLI via argocd client; UI (Argo CD))

– website, Argo CD CLI Client

Argo CD Applications (see Applications (Argo CD))

Argo CD Image Updater, GitOps Promotions
– information online, GitOps Promotions

Argo CD Operator, Argo CD Operator

Argo CD Project Git repository, Application Overview

Argo Events, The Argo Ecosystem

Argo Labs, The Argo Ecosystem

Argo Project, The Argo Ecosystem
– GitHub organization, GitHub

– “graduated” CNCF status, GitHub

– meeting calendar online, Slack

Argo Project Labs, GitHub
– Argo CD Image Updater, GitOps Promotions

Argo Rollouts, The Argo Ecosystem, Progressive Delivery
– website, Progressive Delivery

Argo Workflows, The Argo Ecosystem
– workflow best practices, GitOps Workflow Best

Practices-Merging strategy

argocd CLI client
– about, Argo CD CLI Client, Command-line interface

(CLI)

– API leveraged, The Argo CD Command-Line Interface
(CLI), Additional Methods for Managing Argo CD

– Application status check, Repository Access

– Argo CD managed via, The Argo CD Command-Line
Interface (CLI)

– argocd login, The Argo CD Command-Line Interface
(CLI)

– changing default admin password, The Argo CD
Command-Line Interface (CLI), The Admin User

– config file creation, The Argo CD Command-Line
Interface (CLI)

– --grpc-web parameter for ingress controller, The
Argo CD Command-Line Interface (CLI)

– logging out, The Argo CD Command-Line Interface
(CLI)

– obtaining admin password, The Admin User

– authentication tokens, HTTPS Credentials
– deleting a token, Auth tokens

– displaying a user’s tokens, Auth tokens

– expiration, Auth tokens

– generating, Auth tokens

– cluster added, Adding a Cluster with the CLI-Adding a
Cluster with the CLI

– referencing cluster, Adding a Cluster with the CLI

– cluster removed, Adding a Cluster with the CLI

– clusters updated, Adding a Cluster Declaratively

– contexts listed, The Argo CD Command-Line Interface
(CLI)

– credential template setup, Enabling Reuse Through
Credential Templates

– installation instructions online, Argo CD CLI Client, The
Argo CD Command-Line Interface (CLI)

– password changed, The Argo CD Command-Line
Interface (CLI), The Admin User, Local Users

– policy files validated, Custom Role Creation

– Projects listed, Create Project

– repository credentials, HTTPS Credentials, HTTPS
Credentials

– UI versus CLI, HTTPS Credentials

– role-based access control governing, Adding a Cluster
Declaratively

– single sign-on using, SSO using the Argo CD CLI-SSO
using the Argo CD CLI

– synchronizing Applications
– automated, Managing How Applications Are

Synchronized

– manual initiation, Managing How Applications Are
Synchronized

– TLS repository certificate management, Configuring
TLS Repository Certificates

– removing certificates, Configuring TLS Repository
Certificates

– restoring certificates, Configuring TLS Repository
Certificates

– user information retrieved, The Admin User

ArgoCD Extension Metrics for Prometheus metrics, UI
Extensions

argocd-cm (ConfigMap)
– admin account disabled, Disabling users

– anonymous access, Anonymous Access

– Application sync impersonation enabled, Enable Sync
with Impersonation

– Argo CD managed via, Additional Methods for
Managing Argo CD

– authentication token management, Auth tokens

– ConfigMap named argocd-cm, Additional Methods for
Managing Argo CD

– configuring TLS repository certificates declaratively,
Configuring TLS Repository Certificates

– controller pattern, Kubernetes Controller Pattern

– health checks by Argo CD customized, Argo CD Health
Checks

– health checks for Applications restored, Application
Health

– local users, Local Users
– disabling, Disabling users

– new local user defined, Local Users

– viewing user information, Local Users

– reconciliation loop modifications, Modifying
Reconciliation

– SSO implementation, SSO in action-SSO using direct
OIDC

– system-level diffing, System-Level Diffing

ARGOCD_AUTH_TOKEN, Auth tokens

ARGOCD_GPG_ENABLED, Signature Verification in Action

argocd_ssh private key file, SSH-Based Authentication

argocd_ssh.pub public key file, SSH-Based Authentication

authentication
– anonymous access, Anonymous Access

– authentication tokens, Auth tokens-Auth tokens, HTTPS
Credentials

– apiKey capability for local users, Local Users, Auth
tokens

– deleting, Auth tokens

– displaying a user’s tokens, Auth tokens

– expiration, Auth tokens

– revoking, Auth tokens

– Casbin system used by Argo CD, Argo CD RBAC Basics
– information online, Argo CD RBAC Basics

– Keycloak, SSO in action-SSO using the Argo CD CLI

– OpenID Connect, Single Sign On (SSO)

B

banner notifications, Banner Notifications

basics for getting started, Prerequisites

book exercises Git repository, Companion Git Repository
– App-of-Apps pattern, App-of-Apps Pattern

– Application sync with impersonation patch file, Enable
Sync with Impersonation

– config management plugin, Registering the Plugin

– database schema use case, Argo CD Application
Overview

– Gitea installation Helm chart, Repository Access

– HTTPS-based credentials, HTTPS Credentials

– migrating a repository script, Setting Up Webhooks

– Prometheus Stack installation, Installing Prometheus
Stack

– sidecar definition, Registering the Plugin

– SSO via Keycloak, SSO in action

book web page, How to Contact Us

broadcast storm, Use Case: Using Progressive Sync
– Progressive Sync avoiding, Use Case: Using

Progressive Sync

C

caching by Redis, Argo CD Key Patterns, High Availability

Casbin authentication system, Argo CD RBAC Basics
– information online, Argo CD RBAC Basics

Cascading Style Sheets (CSS), Custom Styles-Custom
Styles

Cert Manager, Argo CD Health Checks

CI/CD (see continuous integration/continuous deployment
(CI/CD))

CLI via argocd client
– about, Argo CD CLI Client, Command-line interface

(CLI)

– API leveraged, The Argo CD Command-Line Interface
(CLI), Additional Methods for Managing Argo CD

– Application status check, Repository Access

– Argo CD managed via, The Argo CD Command-Line
Interface (CLI)

– argocd login, The Argo CD Command-Line Interface
(CLI)

– changing default admin password, The Argo CD
Command-Line Interface (CLI), The Admin User

– config file creation, The Argo CD Command-Line
Interface (CLI)

– --grpc-web parameter for ingress controller, The
Argo CD Command-Line Interface (CLI)

– logging out, The Argo CD Command-Line Interface
(CLI)

– obtaining admin password, The Admin User

– authentication tokens, HTTPS Credentials
– deleting a token, Auth tokens

– displaying a user’s tokens, Auth tokens

– expiration, Auth tokens

– generating, Auth tokens

– cluster added, Adding a Cluster with the CLI-Adding a
Cluster with the CLI

– referencing cluster, Adding a Cluster with the CLI

– cluster removed, Adding a Cluster with the CLI

– clusters updated, Adding a Cluster Declaratively

– contexts listed, The Argo CD Command-Line Interface
(CLI)

– credential template setup, Enabling Reuse Through
Credential Templates

– installation instructions online, Argo CD CLI Client, The
Argo CD Command-Line Interface (CLI)

– password changed, The Argo CD Command-Line
Interface (CLI), The Admin User, Local Users

– policy files validated, Custom Role Creation

– Projects listed, Create Project

– repository credentials, HTTPS Credentials, HTTPS
Credentials

– UI versus CLI, HTTPS Credentials

– role-based access control governing, Adding a Cluster
Declaratively

– single sign-on using, SSO using the Argo CD CLI-SSO
using the Argo CD CLI

– synchronizing Applications
– automated, Managing How Applications Are

Synchronized

– manual initiation, Managing How Applications Are
Synchronized

– TLS repository certificate management, Configuring
TLS Repository Certificates

– removing certificates, Configuring TLS Repository
Certificates

– restoring certificates, Configuring TLS Repository
Certificates

– user information retrieved, The Admin User

Cloud Native Computing Foundation (CNCF)
– Argo CD popularity, Why We Wrote This Book

– Argo Project a part of, Slack
– “graduated” CNCF status, GitHub

– Kubernetes as foundation, Introduction to Argo CD

– Slack for community interaction, Slack
– Argo-specific channels, Slack

– website for invitation, Slack

– website, Slack

Cloudflare article on distributed denial-of-service attacks,
Setting Up Webhooks

cluster sprawl, Introduction to Argo CD

cluster-scoped installation mode, Installation Types, Cluster
Scoped

– resource management in Projects, Resource
Management-Resource Management

clusters
– adding clusters managed by Argo CD, Destinations,

Adding Remote Clusters-Adding a Cluster Declaratively
– adding a cluster declaratively, Adding a Cluster

Declaratively-Adding a Cluster Declaratively

– adding a cluster with CLI, Adding a Cluster with
the CLI-Adding a Cluster with the CLI

– creating a kind cluster, Deploying Argo CD using
YAML manifests

– creating an Argo CD cluster, Creating a Cluster

– referencing added cluster, Adding a Cluster with
the CLI

– ServiceAccount created, Adding a Cluster with the
CLI, Adding a Cluster Declaratively

– architecture of clusters, Cluster Architecture-How
Clusters Are Defined

– cluster definition options online, How Clusters Are
Defined

– credentials in Kubernetes Secret, How Clusters Are
Defined

– how clusters are defined, How Clusters Are
Defined-How Clusters Are Defined

– hub-and-spoke design, Hub-and-Spoke Design

– local cluster reference, Cluster Architecture

– local versus remote clusters, Local Versus Remote
Clusters

– deleting a cluster via CLI, Adding a Cluster with the
CLI

– deleting a kind cluster, Deploying Argo CD using Helm

– deploying to multiple clusters, Deploying Applications
to Multiple Clusters-ApplicationSets

– about, Deploying Applications to Multiple Clusters

– App-of-Apps pattern, App-of-Apps Pattern

– ApplicationSets, ApplicationSets-ApplicationSets

– Helm, Using Helm

– kind create cluster, Deploying Argo CD using YAML
manifests, Creating a Cluster

– --name parameter, Deploying Argo CD using YAML
manifests

– kind delete cluster, Deploying Argo CD using Helm

– listing clusters managed by Argo CD, Destinations

– multinode cluster creation documentation online, High
Availability

– Project resource management, Resource Management

– updating clusters managed by Argo CD, Adding a
Cluster Declaratively

CNCF (see Cloud Native Computing Foundation (CNCF))

command-line interface (see CLI via argocd client)

community interactions, Interacting with the Community
– GitHub, GitHub

– Slack, Slack
– Argo-specific channels, Slack

– Kubernetes communities, Slack

config management plugins, Config Management Plugins-
Parameters

– about, Config Management Plugins

– ConfigManagementPlugin manifest, Config
Management Plugins-The ConfigManagementPlugin
Manifest

– customizing plugin execution, Customizing Plugin
Execution

– environment variables, Environment Variables

– parameters, Parameters-Parameters

– determining if plugin executes for given Application,
The ConfigManagementPlugin Manifest

– execution of plugin, The ConfigManagementPlugin
Manifest

– implementing, The ConfigManagementPlugin Manifest

– registering the plugin, Registering the Plugin-
Registering the Plugin

– sidecar pattern, Config Management Plugins
– ConfigManagementPlugin manifest, Registering the

Plugin

– externalizing configurations principle, Registering
the Plugin

– rules for property values, Registering the Plugin

– tooling for plugin execution, Config Management
Plugins

ConfigManagementPlugin manifest, Config Management
Plugins-The ConfigManagementPlugin Manifest

ConfigMap (argocd-cm)
– admin account disabled, Disabling users

– anonymous access, Anonymous Access

– Application sync impersonation enabled, Enable Sync
with Impersonation

– Argo CD managed via, Additional Methods for
Managing Argo CD

– authentication token management, Auth tokens

– configuring TLS repository certificates declaratively,
Configuring TLS Repository Certificates

– controller pattern, Kubernetes Controller Pattern

– health checks by Argo CD customized, Argo CD Health
Checks

– health checks for Applications restored, Application
Health

– local users, Local Users
– disabling, Disabling users

– new local user defined, Local Users

– viewing user information, Local Users

– named argocd-cm, Additional Methods for Managing
Argo CD

– reconciliation loop modifications, Modifying
Reconciliation

– SSO implementation, SSO in action-SSO using direct
OIDC

– system-level diffing, System-Level Diffing

configuration of Argo CD

– CLI for, Command-line interface (CLI), The Argo CD
Command-Line Interface (CLI)

– CLI login config file, The Argo CD Command-Line
Interface (CLI)

– declarative approach, Interacting with Argo CD,
Additional Methods for Managing Argo CD

– drift management, Configuration Drift, Kubernetes
Controller Pattern

– high availability, High Availability-High Availability
– standard deployment, High availability

– resource definitions as declarative, Argo CD Key
Patterns

– declarative configuration, Interacting with Argo
CD, Additional Methods for Managing Argo CD

– RESTful API for, Additional Methods for Managing
Argo CD-Additional Methods for Managing Argo CD

– UI for, API server, The User Interface in Depth-The
User Interface in Depth

context
– adding a cluster declaratively, Adding a Cluster

Declaratively

– adding a cluster via CLI, Adding a Cluster with the CLI

– argocd logout, The Argo CD Command-Line Interface
(CLI)

– finding context name in kubeconfig via kubectl, Adding
a Cluster with the CLI

– kubectl context after kind create cluster, Deploying
Argo CD using YAML manifests

– Kubernetes context into login config file, The Argo CD
Command-Line Interface (CLI)

– list of contexts via argocd context, The Argo CD
Command-Line Interface (CLI)

continuous integration/continuous deployment (CI/CD)
– about CI, CD, GitOps, and Argo CD, Integrating CI with

Argo CD

– authentication token use, Auth tokens

– Tekton for, CI/CD Integration via Tekton-Triggering
Tekton Pipelines

– about, CI/CD Integration via Tekton

– building a Tekton pipeline, Building a Tekton
Pipeline-Building a Tekton Pipeline

– triggering Tekton pipelines, Triggering Tekton
Pipelines-Triggering Tekton Pipelines

– webhooks
– importance of in CI/CD workflow, Setting Up

Webhooks

– Notifications of Argo CD, Notifications

– reconciliation loop association, Reconciliation
Response Time

– setting up webhooks, Setting Up Webhooks-Setting
Up Webhooks

control plane cluster, Hub-and-Spoke Design
– Argo CD control plane, Cluster Management

control plane repository, How many repositories are
needed?

Conway’s law, GitOps Directory Structure Considerations

core installation of Argo CD, Installation Types

CRD (see Custom Resource Definitions (CRDs))

cryptographic signature verification, Enforcing Signature
Verification-Signature Verification in Action

– about signature verification, Enforcing Signature
Verification

– disabling, Signature Verification in Action

– enabling, Enforcing Signature Verification

– Git or Git-type repositories only, Enforcing Signature
Verification

– GNU Privacy Guard on repository, Enforcing Signature
Verification

– GNU Privacy Guard–formatted public key, Enable
Signature Verification

– signature verification in action, Signature Verification
in Action

– signed commit against repository, Signature
Verification in Action

CSS (Cascading Style Sheets), Custom Styles-Custom
Styles

Custom Resource Definitions (CRDs), Kubernetes
Controller Pattern

– Applications as, Managing Applications, Application
Sources, Applications at Scale, Use Case: App-of-Apps
with Sync Waves

– ApplicationSets, ApplicationSets-ApplicationSets

– AppProject CRD controlling Projects, Namespace
Scoped

– architecture of Argo CD, Custom resources

– extending the Kubernetes impact, Config Management
Plugins

– operators managing, Kubernetes Controller Pattern

– Tekton components as, Building a Tekton Pipeline

custom resources
– architecture of Argo CD, Custom resources

– Custom Resource Definitions to implement, Kubernetes
Controller Pattern, Custom resources

customization of the UI, User Interface Customization-UI
Extensions

– ArgoCD Extension Metrics for Prometheus metrics, UI
Extensions

– banner notifications, Banner Notifications

– Cascading Style Sheets, Custom Styles-Custom Styles

– UI extensions, UI Extensions-UI Extensions

D

dashboard for Argo CD, Deploying Argo CD using YAML
manifests

– deploying Applications, Deploy Applications

dashboard for GitOps use case, Use Case: GitOps
Dashboard-Test Setup

– about, Use Case: GitOps Dashboard

– configuring Project, Configure Project

– creating Project, Create Project

– testing setup, Test Setup-Test Setup

database schema setup use case, Use Case: Database
Schema Setup-Seeing It in Action

– about, Use Case: Database Schema Setup

– importance of probes, Importance of Probes

– manifest sync wave, Manifest Sync Wave Overview-
Manifest Sync Wave Overview

– repository of artifacts, Argo CD Application Overview

– seeing it in action, Seeing It in Action-Seeing It in
Action

– viewing manifest, Argo CD Application Overview

DDoS attacks (see distributed denial-of-service (DDoS)
attacks)

declarative nature of Argo CD

– GitOps desired state, Principle 1: Declarative, Argo CD
Architecture

– monitoring and synchronizing source of truth,
Reconciliation Response Time

– resource definitions, Argo CD Key Patterns
– declarative configuration, Interacting with Argo

CD, Additional Methods for Managing Argo CD

– user password defined declaratively, Local Users

declarative nature of Kubernetes, What Is Argo CD?, Why
Argo CD?

default Project, Projects

dependencies in Applications via Progressive Sync,
Progressive Sync

– alpha feature, Progressive Sync

– use case, Use Case: Using Progressive Sync-Use Case:
Using Progressive Sync

deployments
– App-of-Apps with sync waves use case, Use Case Setup-

Use Case: App-of-Apps with Sync Waves
– Argo CD health check setup, Adding Argo CD

Health Checks

– probe setup, Inspecting Probes

– setup, Use Case Setup

– use case, Use Case: App-of-Apps with Sync Waves-
Use Case: App-of-Apps with Sync Waves

– Application, Deploying Your First Application-Deploying
Your First Application

– Application with impersonation, Deploying an
Application with Impersonation

– Applications in specified order via Progressive Sync,
Progressive Sync, Use Case: Using Progressive Sync

– alpha feature, Progressive Sync

– use case, Use Case: Using Progressive Sync-Use
Case: Using Progressive Sync

– Argo CD deployment, Deploying Argo CD-Argo CD
Operator

– admin password obtained, The Admin User

– Argo CD control plane, Cluster Management

– Argo CD Operator, Argo CD Operator

– changing default admin password, The Argo CD
Command-Line Interface (CLI), The Admin User,
Securing Argo CD

– cluster-scoped installation mode, Installation Types,
Cluster Scoped

– core installation, Installation Types

– high availability mode, High Availability-High
Availability

– high availability mode in standard deployment,
High availability

– installation, Installing Argo CD-Installation Types

– installation modes, Installation Types, Argo CD
Installation Modes-Namespace Scoped

– installation options, Installation Types

– installation tested, Deploying Argo CD using YAML
manifests

– login username and password, Deploying Argo CD
using YAML manifests, The User Interface in Depth

– namespace-scoped installation mode, Installation
Types, Namespace Scoped

– securing the server, Securing Argo CD

– updated Helm chart with TLS enabled, Securing
Argo CD

– YAML manifests, Deploying Argo CD using YAML
manifests-Deploying Argo CD using YAML
manifests

– database Application deployment use case, Use Case:
Database Schema Setup-Seeing It in Action

– deploying to multiple clusters, Deploying Applications
to Multiple Clusters-ApplicationSets

– about, Deploying Applications to Multiple Clusters

– App-of-Apps pattern, App-of-Apps Pattern

– ApplicationSets, ApplicationSets-ApplicationSets

– Helm, Using Helm

– Kubernetes controller example, Kubernetes Controller
Pattern

– progressive delivery, Progressive Delivery

developer custom role in RBAC, Custom Role Creation

DevOps, The GitOps Movement

Dex identity server, Single Sign On (SSO)

Dex OIDC, Dex
– callback URL, SSO in action

– SSO using Dex, SSO using Dex-SSO using Dex

disaster recovery and rollback, Rollback and Disaster
Recovery

distributed denial-of-service (DDoS) attacks
– information online, Setting Up Webhooks

– on-demand refresh of Application, Setting Up
Webhooks

drift management, Configuration Drift, Kubernetes
Controller Pattern, Application Overview

DRY approach to Git directory structure, The DRY
approach

dry runs (Kubernetes), Eventual Consistency
– skipping on missing resource, Eventual Consistency

dynamic parameters, Parameters

E

environment variables
– ARGOCD_AUTH_TOKEN, Auth tokens

– ARGOCD_GPG_ENABLED, Signature Verification in
Action

– customizing plugin execution, Environment Variables

– $HOMEDIR reading environment variable, The Argo
CD Command-Line Interface (CLI)

– KIND_CLUSTER_NAME, Deploying Argo CD using
YAML manifests

– KUBECONFIG, Creating a Cluster

– parameters exposed to plugins as, Parameters,
Parameters

– REMOTE_CLUSTER_IP, Creating a Cluster

– unsetting, Creating a Cluster

Events (Argo Project), The Argo Ecosystem

extending Argo CD
– about, Argo CD Key Patterns, Extending Argo CD

– config management plugins, Config Management
Plugins-Parameters

– about, Config Management Plugins

– ConfigManagementPlugin manifest, Config
Management Plugins-The
ConfigManagementPlugin Manifest

– customizing plugin execution, Customizing Plugin
Execution-Parameters

– determining if plugin executes for given
Application, The ConfigManagementPlugin

Manifest

– environment variables, Environment Variables

– execution of plugin, The ConfigManagementPlugin
Manifest

– implementing plugin, The
ConfigManagementPlugin Manifest

– parameters, Parameters-Parameters

– registering the plugin, Registering the Plugin-
Registering the Plugin

– sidecar pattern, Config Management Plugins,
Registering the Plugin, Registering the Plugin

– tooling for plugin execution, Config Management
Plugins

– user interface customization, User Interface
Customization-UI Extensions

– ArgoCD Extension Metrics for Prometheus metrics,
UI Extensions

– banner notifications, Banner Notifications

– Cascading Style Sheets, Custom Styles-Custom
Styles

– UI extensions, UI Extensions-UI Extensions

extensibility of Argo CD, Argo CD Key Patterns

F

finalizers (Kubernetes), Deleting Applications

Flux
– Argo CD versus, Comparison of GitOps Tools in the

Ecosystem

– “Ways of Structuring Your Repositories”, Directory
structure resources

G

garbage collection (Kubernetes)
– finalizers, Deleting Applications

– syncOption PruneLast
– Application level, Application-Level Options

– resource level, Resource-Level Options

– syncOption PrunePropagationPolicy, Application-Level
Options

generators for Applications, ApplicationSets

getting started, Prerequisites

Git
– about GitOps, Preface

– Argo CD
– Application source, Application Sources, Git

– Image Updater, GitOps Promotions

– Argo CD Project repository, Application Overview

– book exercises repository, Companion Git Repository
– App-of-Apps pattern, App-of-Apps Pattern

– Application sync with impersonation patch file,
Enable Sync with Impersonation

– config management plugin, Registering the Plugin

– database schema use case, Argo CD Application
Overview

– Gitea installation Helm chart, Repository Access

– HTTPS-based credentials, HTTPS Credentials

– migrating a repository script, Setting Up Webhooks

– Prometheus Stack installation, Installing
Prometheus Stack

– sidecar definition, Registering the Plugin

– SSO via Keycloak, SSO in action

– changes in repository detected, GitOps Promotions

– commits detected, GitOps Promotions

– directory structure considerations, GitOps Directory
Structure Considerations

– determining how many repositories, How many
repositories are needed?

– DRY approach, The DRY approach

– information online, Directory structure resources

– parameterizing where possible, Parameterize
where you can

– Gitea Git platform, Repository Access-Repository
Access

– protected repositories, Protected Repositories-Enabling
Reuse Through Credential Templates

– about, Protected Repositories

– credential templates, Enabling Reuse Through
Credential Templates

– HTTPS credentials, HTTPS Credentials-HTTPS
Credentials

– SSH-based authentication, SSH-Based
Authentication-SSH-Based Authentication

– repository management in Argo CD Projects, Resource
Management

– signature verification needing GNU Privacy Guard,
Enforcing Signature Verification

– TLS repository certificates, Repository Access-
Repository Access

– configuring, Configuring TLS Repository
Certificates

– configuring declaratively, Configuring TLS
Repository Certificates

– removing, Configuring TLS Repository Certificates

– restoring, Configuring TLS Repository Certificates

– versioned and immutable, Principle 2: Versioned and
Immutable

– website for information and installation, Companion Git
Repository

– workflow best practices, GitOps Workflow Best
Practices-Merging strategy

– merging strategy, Merging strategy

– separation of concerns, Separation of concerns

Git Flow considerations, GitOps Workflow Best Practices-
Merging strategy

– merging strategy, Merging strategy

– separation of concerns, Separation of concerns

Gitea Git platform, Repository Access-Repository Access
– Helm installation, Repository Access-Repository Access

– landing page, Repository Access

– protected repositories, Protected Repositories-Enabling
Reuse Through Credential Templates

– about, Protected Repositories

– credential templates, Enabling Reuse Through
Credential Templates

– HTTPS credentials, HTTPS Credentials-HTTPS
Credentials

– SSH-based authentication, SSH-Based
Authentication-SSH-Based Authentication

– repository management in Argo CD Projects, Resource
Management

– signature verification needing GNU Privacy Guard,
Enforcing Signature Verification

– signing in, Repository Access

– TLS repository certificates, Repository Access-
Repository Access

– configuring, Configuring TLS Repository
Certificates

– configuring declaratively, Configuring TLS
Repository Certificates

– removing, Configuring TLS Repository Certificates

– restoring, Configuring TLS Repository Certificates

– UI, Repository Access
– Private repositories, HTTPS Credentials

GitHub Argo Project organization and community, GitHub

GitOps
– about, Preface, The GitOps Movement

– about Argo CD, Preface

– about DevOps, The GitOps Movement

– Argo CD versus Flux, Comparison of GitOps Tools in
the Ecosystem

– community, Interacting with the Community
– Slack, Slack

– controllers
– Argo CD versus Flux, Comparison of GitOps Tools

in the Ecosystem

– pulling and polling desired state, Principle 3: Pulled
Automatically

– reconciling running state, Principle 4: Continuously
Reconciled

– dashboard use case, Use Case: GitOps Dashboard-Test
Setup

– about, Use Case: GitOps Dashboard

– configuring Project, Configure Project

– creating Project, Create Project

– deploying Applications, Deploy Applications

– testing setup, Test Setup-Test Setup

– declarative expression of desired state, Argo CD
Architecture

– directory structure considerations, GitOps Directory
Structure Considerations

– communication structure of organization, GitOps
Directory Structure Considerations

– determining how many repositories, How many
repositories are needed?

– DRY approach, The DRY approach

– information online, Directory structure resources

– parameterizing where possible, Parameterize
where you can

– evolving, GitOps Is Still Evolving-Merging strategy

– immutability and tools that preserve, Tools-Beyond
Helm and Kustomize

– about, Tools

– Helm, Helm

– Kustomize, Kustomize

– origins of, Origins of GitOps

– principles of, OpenGitOps Principles-Principle 4:
Continuously Reconciled

– controllers pulling desired state, Principle 3: Pulled
Automatically

– controllers reconciling running state, Principle 4:
Continuously Reconciled

– declarative, Principle 1: Declarative

– online, GitOps Is Still Evolving

– pulled automatically, Reconciliation Response Time

– versioned and immutable, Principle 2: Versioned
and Immutable

– promotions, GitOps Promotions

– workflow best practices, GitOps Workflow Best
Practices-Merging strategy

– merging strategy, Merging strategy

– separation of concerns, Separation of concerns

GitOps 1:1 Repo (Hernandez), Directory structure
resources

The GitOps Bridge Project, Directory structure resources

“GitOps Repository Structures and Patterns” (Schnatterer),
Directory structure resources

GitOps Standards (Nunn), Directory structure resources

GNU Privacy Guard (GnuPG or GPG), Enforcing Signature
Verification

– ARGOCD_GPG_ENABLED, Signature Verification in
Action

– command line tools for download, Enable Signature
Verification

– public key for signature verification, Enable Signature
Verification

– argocd-gpg-keys-cm ConfigMap file, Enable
Signature Verification

Grafana, Accessing Grafana-Accessing Grafana
– about, Monitoring

– Argo CD metrics dashboard, Accessing Grafana

Group Version Kind (GVK) ignoreDifferences annotation
– application level, Application-Level Diffing

– system level, System-Level Diffing

H

health checks by Argo CD, Argo CD Health Checks
– App-of-Apps with sync waves use case, Adding Argo CD

Health Checks

– current built-in checks online, Argo CD Health Checks

– customizing, Argo CD Health Checks

– documentation online, Argo CD Health Checks

– enabling, Adding Argo CD Health Checks

– written in Lua, Argo CD Health Checks

health checks for Applications, Application Health
– database schema setup, Seeing It in Action-Seeing It in

Action

– importance of probes, Importance of Probes, Set Up
Probes

– health status from Kubernetes API, Importance of
Probes

– Progressive Sync considering health, Progressive Sync

– removed from Argo CD, Application Health
– information online, Application Health

– restoring to ConfigMap, Application Health

– sync compare-options annotation, Comparing Options

Helm
– about, Helm, Helm

– App-of-Apps use case, Inspecting Probes

– Application management tool, Helm
– deploying first Application, Deploying Your First

Application-Deploying Your First Application

– Argo CD Application source, Application Sources, Helm

– Argo CD documentation page for using Helm, Using
Helm

– Argo CD resources per component, Scaling Up

– Argo CD versus Flux, Comparison of Flux and Argo CD

– ConfigManagementPlugin manifest with Kustomize,
The ConfigManagementPlugin Manifest

– ambiguity after applying, Rendered Manifests
Pattern

– deploying Applications to multiple clusters, Using Helm

– deploying Argo CD, Deploying Argo CD using Helm
– book focusing on Helm, Argo CD Operator

– dynamic templating for resources, Deploying Argo
CD using Helm

– NOTES, Deploying Argo CD using Helm

– showing chart values, Deploying Argo CD using
Helm

– updated chart with SSL passthrough enabled,
Securing Argo CD

– updated chart with TLS enabled, Securing Argo CD

– Gitea installation, Repository Access-Repository Access

– high availability mode for Argo CD, High Availability
– sharding and, High Availability

– installation instructions online, Helm

– Kustomize processing Helm charts, Kustomize

– Mattermost installation, Installing Mattermost

– Notifications setup, Setting Up Argo CD Notifications-
Setting Up Argo CD Notifications

– Prometheus Stack installed, Installing Prometheus
Stack-Installing Prometheus Stack

– retrieving name of installed Stack, Configuring
Argo CD for Prometheus

– updating Argo CD installation, Configuring Argo CD
for Prometheus

– protected repositories, Protected Repositories-Enabling
Reuse Through Credential Templates

– about, Protected Repositories

– credential templates, Enabling Reuse Through
Credential Templates

– HTTPS credentials, HTTPS Credentials-HTTPS
Credentials

– SSH-based authentication, SSH-Based
Authentication-SSH-Based Authentication

– repository management in Argo CD Projects, Resource
Management

– signature verification not supported, Enforcing
Signature Verification

– TLS repository certificates, Repository Access-
Repository Access

– configuring, Configuring TLS Repository
Certificates

– configuring declaratively, Configuring TLS
Repository Certificates

Hernandez, Christian, Directory structure resources

high availability for Argo CD, High Availability-High
Availability

– multinode cluster needed for HA mode, High
Availability

– standard deployment, High availability

– worker nodes in Kubernetes, High Availability

$HOMEDIR, The Argo CD Command-Line Interface (CLI)

HTTP connections redirected to HTTPS, Securing Argo CD

HTTPS credentials for protected repository, HTTPS
Credentials-HTTPS Credentials

hub-and-spoke design of clusters, Hub-and-Spoke Design
– cluster-scoped installation mode, Cluster Scoped

– push model, Hub-and-Spoke Design

hydrated manifests (see rendered manifests for no
ambiguity)

I

IaC (see infrastructure as code (IaC))

identity services
– connectors, Dex

– Dex, Single Sign On (SSO)

– Dex OIDC, Dex

– Keycloak, SSO in action-SSO using the Argo CD CLI

IDP (internal developer platform), Argo CD

Image Updater (Argo CD), GitOps Promotions
– information online, GitOps Promotions

Impersonation (Kubernetes), Application Sync
Impersonation

– Application synchronization (Argo CD), Application
Sync Impersonation-Deploying an Application with
Impersonation

– about, Application Sync Impersonation

– enabling, Enable Sync with Impersonation

– service account, Define the Service Account to Use
for Impersonation

in-cluster
– keyword for destination, Deploying Your First

Application

– local in-cluster, Cluster Architecture-Local Versus
Remote Clusters

– no need to define this cluster, How Clusters Are
Defined

– updating configuration, How Clusters Are Defined-
How Clusters Are Defined

– namespace-scoped installation of Argo CD, Namespace
Scoped

infrastructure as code (IaC)
– about GitOps, Preface

– configuration drift management, Configuration Drift,
Kubernetes Controller Pattern

– systems in sync, Comparison of GitOps Tools in the
Ecosystem

ingress controller
– accessing Argo CD, The User Interface in Depth

– argocd login --grpc-web parameter, The Argo CD
Command-Line Interface (CLI)

installing Argo CD
– architecture of Argo CD, Argo CD Architecture-Argo CD

Key Patterns
– about, Installing Argo CD

– cluster credentials in Kubernetes Secret, How
Clusters Are Defined

– key patterns, Argo CD Key Patterns

– Kubernetes controller pattern, Kubernetes
Controller Pattern-Kubernetes Controller Pattern

– overview, Argo CD Architecture Overview-
Notifications

– stateless architecture, Argo CD Key Patterns

– deploying Argo CD, Deploying Argo CD-Argo CD
Operator

– admin password obtained, The Admin User

– Argo CD control plane, Cluster Management

– Argo CD Operator, Argo CD Operator

– changing default admin password, The Argo CD
Command-Line Interface (CLI), The Admin User,

Securing Argo CD

– Helm charts, Deploying Argo CD using Helm

– Helm charts as book focus, Argo CD Operator

– high availability mode, High Availability-High
Availability

– high availability mode in standard deployment,
High availability

– login username and password, Deploying Argo CD
using YAML manifests, The User Interface in Depth

– YAML manifests, Deploying Argo CD using YAML
manifests-Deploying Argo CD using YAML
manifests

– installation, Installing Argo CD-Installation Types
– core installation, Installation Types

– installation options, Installation Types

– securing the server, Securing Argo CD

– testing, Deploying Argo CD using YAML manifests

– updated Helm chart with TLS enabled, Securing
Argo CD

– installation modes, Installation Types, Argo CD
Installation Modes

– cluster scoped, Installation Types, Cluster Scoped

– namespace scoped, Installation Types, Namespace
Scoped

internal developer platform (IDP), Argo CD

Intuit Argo Project, What Is Argo CD?, Argo CD

IP address via REMOTE_CLUSTER_IP, Creating a Cluster

J

Jobs (Kubernetes) in use case, Manifest Sync Wave
Overview, Seeing It in Action

jq tool, YAML/JSON Processing
– information online, Application-Level Diffing

– path for application-level diffing, Application-Level
Diffing

JSON
– about jq and yq tools, YAML/JSON Processing

– path for application-level diffing, Application-Level
Diffing

JSON Web Tokens (JWT), Auth tokens

Jsonnet supported by Argo CD, Beyond Helm and
Kustomize

jsonpath period characters escaped, Adding Argo CD
Health Checks

K

Kargo, GitOps Promotions
– website, GitOps Promotions

Keycloak, SSO in action-SSO using the Argo CD CLI
– admin login, SSO in action

– Argo CD configuration via ConfigMap, SSO in action-
SSO using direct OIDC

– Client ID and Secret in SSO configuration, SSO in
action

– clients such as Argo CD, SSO in action-SSO in action
– Argo CD callback URLs, SSO in action

– groups via client scope, SSO in action-SSO in action

– dashboard, SSO in action

– exposing OIDC-compatible interface, SSO in action

– groups, SSO in action

– implementing SSO, SSO in action-SSO using the Argo
CD CLI

– SSO using Argo CD CLI, SSO using the Argo CD
CLI-SSO using the Argo CD CLI

– SSO using Dex, SSO using Dex-SSO using Dex

– SSO using direct OIDC, SSO using direct OIDC

– kind CoreDNS edited, SSO in action

– OpenSSL for SSL certificate, SSO in action

– realms, SSO in action

– users, SSO in action

kind
– about, kind

– CoreDNS edited, SSO in action

– create cluster, Deploying Argo CD using YAML
manifests

– --name parameter, Deploying Argo CD using YAML
manifests

– database schema setup, Seeing It in Action-Seeing It in
Action

– delete cluster, Deploying Argo CD using Helm

– installation instructions online, kind

– multiple-node cluster documentation online, High
Availability

KIND_CLUSTER_NAME, Deploying Argo CD using YAML
manifests

KUBECONFIG, Creating a Cluster
– unsetting, Creating a Cluster

kubeconfig file in creating a cluster, Creating a Cluster

kubectl
– about, Kubernetes Client

– admin account disabled, Disabling users

– Application controller restarted, Enable Sync with
Impersonation

– Application deleted, Deleting Applications

– authentication token management, Auth tokens
– ServiceAccount token, Adding a Cluster

Declaratively

– clusters managed by Argo CD listed, Destinations

– clusters managed by Argo CD updated, Adding a
Cluster Declaratively

– config command options information online, Adding a
Cluster Declaratively

– context for newly created cluster, Deploying Argo CD
using YAML manifests

– create namespace, Deploying Argo CD using YAML
manifests

– deploying Argo CD, Deploying Argo CD using YAML
manifests

– get pods
– Helm deployment of Argo CD, Deploying Argo CD

using Helm

– YAML manifest deployment of Argo CD, Deploying
Argo CD using YAML manifests

– Grafana UI in terminal window, Accessing Grafana

– Keycloak Operator pods listed, SSO in action

– Kustomize support, Kustomize

– local user added, Local Users
– disabling user, Disabling users

– reinstating disabled user, Disabling users

– manifests deployed on a cluster listed, Deploying Your
First Application

– password secret for admin login, Deploying Argo CD
using YAML manifests, The User Interface in Depth,
The Admin User

– deleting secret, The Admin User

– patching a running ConfigMap, Enable Sync with
Impersonation

– port forwarding to connect to Argo CD, Deploying Argo
CD using YAML manifests

– ServiceAccount for remote cluster creation, Adding a
Cluster Declaratively

– synchronizing Applications, Managing How
Applications Are Synchronized

Kubernetes
– about, Preface, Introduction to Argo CD

– about Argo CD, What Is Argo CD?, Argo CD
Architecture

– about GitOps, Preface

– about kind, Prerequisites

– about kubectl client, Kubernetes Client

– cluster sprawl challenge, Introduction to Argo CD

– controller pattern of Argo CD, Kubernetes Controller
Pattern-Kubernetes Controller Pattern

– Custom Resource Definitions, Kubernetes
Controller Pattern, Custom resources

– Deployment example, Kubernetes Controller
Pattern

– operators, Kubernetes Controller Pattern

– declarative nature of, What Is Argo CD?, Why Argo CD?

– documentation site, Kubernetes Client

– retries for eventual consistency, Eventual Consistency

Kubernetes Impersonation (see Impersonation
(Kubernetes))

Kustomize manifest tool, Kustomize
– ConfigManagementPlugin manifest with Helm, The

ConfigManagementPlugin Manifest

– Helm chart processing by, Kustomize

– kubectl support, Kustomize

– sync wave annotation, Manifest Sync Wave Overview-
Manifest Sync Wave Overview

L

liveness probes (Kubernetes), Importance of Probes
– as best practice for Applications, Set Up Probes

– Kubernetes documentation online, Importance of
Probes, Set Up Probes

local users, Local Users
– adding a local user, Local Users

– resetting password on creation, Local Users

– authentication tokens, Auth tokens-Auth tokens

– disabling, Disabling users

– reinstating disabled user, Disabling users

– password changed via argocd, Local Users

– password defined declaratively, Local Users

– viewing user information, Local Users

login username and password, Deploying Argo CD using
YAML manifests, The User Interface in Depth

– admin password obtained, The Admin User

– anonymous access, Anonymous Access

– changing default admin password, The Argo CD
Command-Line Interface (CLI), The Admin User,
Securing Argo CD

– changing new local user password, Local Users

– password defined declaratively, Local Users

Lua, Argo CD Health Checks

M

managing Argo CD (see configuration of Argo CD)

manifests
– App-of-Apps versus Progressive Sync, Use Case: Using

Progressive Sync

– applying to kind instance, Seeing It in Action

– ConfigManagementPlugin manifest, Config
Management Plugins-The ConfigManagementPlugin
Manifest

– configuration management avoiding duplication, The
DRY approach

– database schema setup use case, Argo CD Application
Overview

– sync waves, Manifest Sync Wave Overview-
Manifest Sync Wave Overview

– deploying Argo CD, Deploying Argo CD using YAML
manifests-Deploying Argo CD using YAML manifests

– Helm resource dynamic templating versus,
Deploying Argo CD using Helm

– deploying first Application, Deploying Your First
Application

– Gitea repository as source, Repository Access

– listing manifests deployed on a cluster, Deploying Your
First Application

– rendered manifests for no ambiguity, Rendered
Manifests Pattern-Rendered Manifests Pattern

– efficient GitOps workflow, Merging strategy

– repository server (Argo CD), Repository Server

– retries, Eventual Consistency

– .spec.destination, Application Overview
– resource management, Resource Management

– .spec.source, Application Overview

– synchronization initiated manually, Managing How
Applications Are Synchronized

– yq to inspect for probes, Inspecting Probes

Mattermost, Notifications-Configuring Mattermost
– configuration, Configuring Mattermost-Configuring

Mattermost
– bot token, Configuring Mattermost

– channel ID, Configuring Mattermost

– installation, Installing Mattermost

– Mattermost Operator, Installing Mattermost

microservices-based architecture of Argo CD, Installing
Argo CD

– overview of architecture, Argo CD Architecture
Overview-Notifications

migrating a repository script, Setting Up Webhooks

monitoring, Monitoring-Accessing Grafana
– about, Monitoring

– Prometheus and Grafana for, Monitoring
– Argo CD metrics dashboard, Accessing Grafana

– configuring Argo CD, Configuring Argo CD for
Prometheus

– Grafana, Accessing Grafana-Accessing Grafana

– Prometheus Stack installation, Installing
Prometheus Stack-Installing Prometheus Stack

– UI for monitoring, Monitoring

monorepo, How many repositories are needed?

multi-tenant installation of Argo CD
– about multi-tenancy, Multi-Tenancy

– core install versus multi-tenant, Installation Types

– dashboard for GitOps use case, Use Case: GitOps
Dashboard-Test Setup

– about, Use Case: GitOps Dashboard

– configuring Project, Configure Project

– creating Project, Create Project

– deploying Applications, Deploy Applications

– testing setup, Test Setup-Test Setup

– deploying via YAML manifests, Deploying Argo CD
using YAML manifests-Deploying Argo CD using YAML
manifests

– installation modes of Argo CD, Installation Types, Argo
CD Installation Modes

– cluster scoped, Installation Types, Cluster Scoped

– namespace scoped, Installation Types, Namespace
Scoped

– Projects, Projects
– default, Projects

– resource management, Resource Management-
Resource Management

N

namespace for deployment, Application Overview,
Destinations

– syncOption CreateNamespace, Application-Level
Options

namespace-scoped installation mode, Installation Types,
Namespace Scoped

– deleting namespace, Deploying Argo CD using Helm

– resource management in Projects, Resource
Management-Resource Management

namespaces denied in resource management, Resource
Management

NGINX, The User Interface in Depth
– about Ingress controllers, The User Interface in Depth

– proxy-buffer-size parameter, SSO using the Argo CD
CLI

– TLS and too many redirects, Securing Argo CD

– TLS termination for Gitea, Repository Access

Notifications (Argo CD), Notifications-Setting Up Argo CD
Notifications

– about, Notifications, Notifications

– demonstrating use, Setting Up Argo CD Notifications

– Mattermost, Notifications-Configuring Mattermost
– bot token, Configuring Mattermost

– channel ID, Configuring Mattermost

– configuration, Configuring Mattermost-Configuring
Mattermost

– installation, Installing Mattermost

– Notification Services, Notifications

– setting up Notifications, Setting Up Argo CD
Notifications-Setting Up Argo CD Notifications

– triggers and templates pre-built, Notifications
– Helm chart to add, Setting Up Argo CD

Notifications

Nunn, Gerald, Directory structure resources

O

OIDC (OpenID Connect) authentication, Single Sign On
(SSO), SSO

online resources
– Argo CD

– Application options available, Application Overview

– Application specification, Deploying Applications to
Multiple Clusters

– Application sync with impersonation patch file,
Enable Sync with Impersonation

– Argo CD Project Git repository, Application
Overview

– CLI client installation instructions, Argo CD CLI
Client, The Argo CD Command-Line Interface (CLI)

– cluster definition options, How Clusters Are
Defined

– health checks by Argo CD documentation, Argo CD
Health Checks

– health checks by Argo CD that are built in, Argo CD
Health Checks

– health checks for Applications removed, Application
Health

– Helm use documentation, Using Helm

– hook deletion policy documentation, Manifest Sync
Wave Overview

– source code, GitHub

– synchronizing Applications documentation,
Managing How Applications Are Synchronized

– system-level diffing documentation, System-Level
Diffing

– UI login page, The User Interface in Depth

– website, Argo CD CLI Client

– Argo CD Image Updater information, GitOps
Promotions

– Argo Project
– calendar of meetings about, Slack

– GitHub organization, GitHub

– Argo Rollouts website, Progressive Delivery

– argocd CLI client installation instructions, The Argo CD
Command-Line Interface (CLI)

– book exercises Git repository, Companion Git
Repository

– App-of-Apps pattern, App-of-Apps Pattern

– Application sync with impersonation patch file,
Enable Sync with Impersonation

– config management plugin, Registering the Plugin

– database schema use case, Argo CD Application
Overview

– Gitea installation Helm chart, Repository Access

– HTTPS-based credentials, HTTPS Credentials

– migrating a repository script, Setting Up Webhooks

– Prometheus Stack installation, Installing
Prometheus Stack

– sidecar definition, Registering the Plugin

– SSO via Keycloak, SSO in action

– book web page, How to Contact Us

– Casbin authentication system, Argo CD RBAC Basics

– Cloud Native Computing Foundation website, Slack

– distributed denial-of-service attacks article, Setting Up
Webhooks

– Git

– book exercises repository, Companion Git
Repository

– (see also book exercises Git repository)

– directory structure resources, Directory structure
resources

– website for information and installation, Companion
Git Repository

– GitOps
– directory structure resources, Directory structure

resources

– principles, GitOps Is Still Evolving

– GNU Privacy Guard command line tools, Enable
Signature Verification

– Helm
– Argo documentation for using Helm, Using Helm

– installation instructions, Helm

– jq expression language, Application-Level Diffing

– Kargo website, GitOps Promotions

– kind, kind
– installation instructions, kind

– multiple-node cluster documentation, High
Availability

– kubectl config options information, Adding a Cluster
Declaratively

– Kubernetes
– documentation site, Kubernetes Client

– probe documentation, Importance of Probes, Set
Up Probes

– OpenAPI information, Additional Methods for Managing
Argo CD

– Prometheus Stack installation yaml file, Installing
Prometheus Stack

– Redis high availability documentation, High Availability

– Tekton website, CI/CD Integration via Tekton

– Telefonistka GitHub repository, GitOps Promotions

– twelve-factor app, Registering the Plugin

– yq information, Inspecting Probes

open source quote by Torvalds, Summary

OpenAPI specification for APIs, Additional Methods for
Managing Argo CD

– more information on OpenAPI online, Additional
Methods for Managing Argo CD

– Swagger UI for visualizing, Additional Methods for
Managing Argo CD

OpenID Connect (OIDC) authentication, Single Sign On
(SSO), SSO

OpenSSL certificate for Keycloak, SSO in action

operationalizing Argo CD

– about, Operationalizing Argo CD

– high availability, High Availability-High Availability
– multinode cluster needed, High Availability

– standard deployment, High availability

– worker nodes in Kubernetes, High Availability

– monitoring, Monitoring-Accessing Grafana
– about, Monitoring

– Argo CD metrics dashboard, Accessing Grafana

– configuring Argo CD, Configuring Argo CD for
Prometheus

– Grafana, Accessing Grafana-Accessing Grafana

– Prometheus and Grafana for monitoring,
Monitoring

– Prometheus Stack installation, Installing
Prometheus Stack-Installing Prometheus Stack

– UI for monitoring, Monitoring

– Notifications, Notifications-Setting Up Argo CD
Notifications

– about, Notifications, Notifications

– demonstrating use, Setting Up Argo CD
Notifications

– Mattermost, Notifications-Configuring Mattermost

– Mattermost configuration, Configuring Mattermost-
Configuring Mattermost

– Mattermost installation, Installing Mattermost

– Notification Services, Notifications

– setting up, Setting Up Argo CD Notifications-
Setting Up Argo CD Notifications

– triggers and templates pre-built, Notifications

– triggers and templates via Helm, Setting Up Argo
CD Notifications

– scalability, Scalability-Sharding
– high availability with autoscaling, High Availability

– monitoring Argo CD consumption, Scaling Up
– (see also monitoring)

– scaling up, Scaling Up-Scaling Up

– sharding, Sharding-Sharding

Operator (Argo CD), Argo CD Operator

operators, Kubernetes Controller Pattern

Operators (Kubernetes), Custom resources, Comparing
Options

P

parameters for customizing plugin execution, Parameters-
Parameters

– dynamic parameters, Parameters

– exposed to plugins as environment variables,
Parameters, Parameters

– static parameters, Parameters

password for admin login, Deploying Argo CD using YAML
manifests, The User Interface in Depth, The Admin User

– changing default admin password, The Argo CD
Command-Line Interface (CLI), The Admin User,
Securing Argo CD

password for new local user, Local Users
– password defined declaratively, Local Users

$PATH, Helm

period character escaped in path string, Adding Argo CD
Health Checks

platform engineering, Argo CD

policies in RBAC
– about role-based access control, Argo CD RBAC Basics

– defaults, RBAC Defaults

– developer custom role, Custom Role Creation

– managing via CSV file, Argo CD RBAC Basics
– separate CSV files, Custom Role Creation

– Project-level configuration, Resource Management

– validating policy files, Custom Role Creation

polyrepo, How many repositories are needed?

prerequisites needed to get started, Prerequisites

probes

– App-of-Apps with sync waves use case, Inspecting
Probes

– as best practice for Applications, Set Up Probes

– database schema setup use case, Importance of Probes

– Kubernetes documentation online, Importance of
Probes, Set Up Probes

production context for Argo CD, Installation Types
– high availability, High availability

– (see also high availability for Argo CD)

progressive delivery, Progressive Delivery

Progressive Synchronization (Argo CD), Progressive Sync,
Use Case: Using Progressive Sync

– alpha feature, Progressive Sync

– use case, Use Case: Using Progressive Sync-Use Case:
Using Progressive Sync

Projects (Argo CD), Projects
– creating Project, Create Project

– dashboard for GitOps use case, Use Case: GitOps
Dashboard-Test Setup

– about, Use Case: GitOps Dashboard

– configuring Project, Configure Project

– creating Project, Create Project

– deploying Applications, Deploy Applications

– testing setup, Test Setup-Test Setup

– default, Projects

– listing currently defined Projects, Create Project

– resource management, Resource Management-
Resource Management

– signature verification at Project level, Enforcing
Signature Verification

Prometheus
– about, Monitoring

– configuring Argo CD for, Configuring Argo CD for
Prometheus

– Grafana, Accessing Grafana-Accessing Grafana

– metrics via ArgoCD Extension Metrics, UI Extensions

– Stack installation, Installing Prometheus Stack-
Installing Prometheus Stack

– about the Stack, Installing Prometheus Stack

– retrieving name of installed Stack, Configuring
Argo CD for Prometheus

push model of cluster hub-and-spoke design, Hub-and-
Spoke Design

R

RBAC (see role-based access control (RBAC))

React basis of Argo CD, UI Extensions

readiness probes (Kubernetes), Importance of Probes
– as best practice for Applications, Set Up Probes

– Kubernetes documentation online, Importance of
Probes, Set Up Probes

readonly role in role-based access control, Argo CD RBAC
Basics

reconciliation response time, Reconciliation Response
Time-Setting Up Webhooks

– modifying reconciliation, Modifying Reconciliation

– reconciliation loop, Reconciliation Response Time
– webhooks alongside, Reconciliation Response Time

– webhooks setup, Setting Up Webhooks-Setting Up
Webhooks

Redis, Redis
– high availability documentation online, High

Availability

– volatile cache without long-term persistence, Argo CD
Key Patterns, High Availability

– worker nodes in Kubernetes, High Availability

REMOTE_CLUSTER_IP, Creating a Cluster

rendered manifests for no ambiguity, Rendered Manifests
Pattern-Rendered Manifests Pattern

– efficient GitOps workflow, Merging strategy

ReplicaSet (Argo CD), Kubernetes Controller Pattern

repo server (Argo CD), Repository Server
– config management tools, Config Management Plugins

– ConfigManagementPlugin manifest, Config
Management Plugins-The ConfigManagementPlugin
Manifest

repositories needed, number of, How many repositories are
needed?

– (see also Git; Gitea Git platform; Helm)

resource definitions as declarative, Argo CD Key Patterns

resource differences ignored
– application level, Application-Level Diffing

– system level, System-Level Diffing

resource generation by repository server, Repository
Server

resource management in Projects, Resource Management-
Resource Management

– ! for denying, Resource Management
– deny rules before allow rules, Resource

Management

resource scaling per Argo CD component, Scaling Up

resources online (see online resources)

RESTful API, Additional Methods for Managing Argo CD

retries in manifest, Eventual Consistency

Richardson, Alexis, Origins of GitOps

role-based access control (RBAC), Role-Based Access
Control-Anonymous Access

– about RBAC in practice, Role-Based Access Control

– anonymous access, Anonymous Access

– AppProject or not-AppProject definition structures,
Argo CD RBAC Basics

– Argo CD CLI under governance of, Adding a Cluster
Declaratively

– basics of, Argo CD RBAC Basics-Argo CD RBAC Basics
– admin and readonly roles, Argo CD RBAC Basics,

Custom Role Creation

– custom role creation, Custom Role Creation

– policies
– about role-based access control, Argo CD RBAC

Basics

– defaults, RBAC Defaults

– developer custom role, Custom Role Creation

– managing via CSV file, Argo CD RBAC Basics

– managing via separate CSV files, Custom Role
Creation

– validating policy files, Custom Role Creation

– Project-level configuration, Resource Management
– dashboard for GitOps use case, Use Case: GitOps

Dashboard-Test Setup

– ServiceAccount for remote clusters, Adding a Cluster
with the CLI, Adding a Cluster Declaratively

– cluster-admin role built in, Adding a Cluster
Declaratively

– User Info page in Argo CD Settings, The User Interface
in Depth

rollback and disaster recovery, Rollback and Disaster
Recovery

S

scalability, Scalability-Sharding
– determining how many repositories, How many

repositories are needed?

– high availability mode with autoscaling, High
Availability

– monitoring Argo CD consumption, Scaling Up
– (see also monitoring)

– scaling up, Scaling Up-Scaling Up
– Argo CD components and, Scaling Up

– sharding, Sharding-Sharding
– about, Sharding

– Application controller replicas setting, High
Availability, Sharding

– assigning shards to clusters, Sharding

– default 10-second timeout, Sharding

– enabling, Sharding

– legacy versus round-robin algorithm, Sharding

– shard-to-cluster ratios, Sharding

Schnatterer, Johannes, Directory structure resources

Secrets (Argo CD)
– Argo CD server certificates defined, Generating Argo

CD TLS Certificates

– controller pattern, Kubernetes Controller Pattern

– managing Argo CD via, Additional Methods for
Managing Argo CD

Secrets (Kubernetes)
– cluster credentials, How Clusters Are Defined

– updating clusters, Adding a Cluster Declaratively

– clusters defined by, Adding a Cluster Declaratively-
Adding a Cluster Declaratively

– repository credentials, HTTPS Credentials, HTTPS
Credentials

– security risk of storing in source code plain text,
Adding a Cluster Declaratively

security
– admin account disabled, Disabling users, Securing Argo

CD

– Application sync impersonation, Application Sync
Impersonation-Deploying an Application with
Impersonation

– about, Application Sync Impersonation

– enabling, Enable Sync with Impersonation

– service account, Define the Service Account to Use
for Impersonation

– Argo CD server secured, Securing Argo CD-Securing
Argo CD

– authentication token expiration, Auth tokens

– authentication token scope, HTTPS Credentials

– Kubernetes API endpoint exposed, Creating a Cluster

– Kubernetes Secrets in source code plain text, Adding a
Cluster Declaratively

– passwords
– admin default changed, The Argo CD Command-

Line Interface (CLI), The Admin User, Securing
Argo CD

– new local user changed, Local Users

– protected repositories, Protected Repositories-Enabling
Reuse Through Credential Templates

– about, Protected Repositories

– credential templates, Enabling Reuse Through
Credential Templates

– HTTPS credentials, HTTPS Credentials-HTTPS
Credentials

– SSH-based authentication, SSH-Based
Authentication-SSH-Based Authentication

– signature verification enforced, Enforcing Signature
Verification-Signature Verification in Action

– about signature verification, Enforcing Signature
Verification

– disabling, Signature Verification in Action

– enabling, Enforcing Signature Verification

– Git or Git-type repositories only, Enforcing
Signature Verification

– GNU Privacy Guard on repository, Enforcing
Signature Verification

– GNU Privacy Guard–formatted public key, Enable
Signature Verification

– signature verification in action, Signature
Verification in Action-Signature Verification in
Action

– signed commit against repository, Signature
Verification in Action

– TLS certificate configuration, Configuring TLS
Certificates-Configuring TLS Repository Certificates

– about trusting certificates, Configuring TLS
Certificates

– generating Argo CD TLS certificates, Generating
Argo CD TLS Certificates-Generating Argo CD TLS
Certificates

– TLS certificates via Cert Manager, Argo CD Health
Checks

– TLS repository certificates, Repository Access-
Repository Access

– configuring, Configuring TLS Repository
Certificates

– configuring declaratively, Configuring TLS
Repository Certificates

– removing, Configuring TLS Repository Certificates

– restoring, Configuring TLS Repository Certificates

self-healing needing to be enabled, Application Sources

service accounts
– Application sync impersonation, Define the Service

Account to Use for Impersonation

– cluster-scoped deployment of Argo CD, Cluster Scoped

ServiceAccount created for remote clusters, Adding a
Cluster with the CLI, Adding a Cluster Declaratively

Settings page of UI (Argo CD), The User Interface in Depth

sharding, Sharding-Sharding
– about, Sharding

– Application controller replicas setting, High
Availability, Sharding

– assigning shards to clusters, Sharding

– default 10-second timeout, Sharding

– enabling, Sharding

– legacy versus round-robin algorithm, Sharding

– shard-to-cluster ratios, Sharding

sidecar pattern, Config Management Plugins, Registering
the Plugin

– externalizing configurations principle, Registering the
Plugin

– rules for property values, Registering the Plugin

signature verification enforced, Enforcing Signature
Verification-Signature Verification in Action

– about signature verification, Enforcing Signature
Verification

– disabling, Signature Verification in Action

– enabling, Enforcing Signature Verification

– Git or Git-type repositories only, Enforcing Signature
Verification

– GNU Privacy Guard on repository, Enforcing Signature
Verification

– GNU Privacy Guard–formatted public key, Enable
Signature Verification

– signature verification in action, Signature Verification
in Action

– signed commit against repository, Signature
Verification in Action

single sign-on (SSO)
– about, Single Sign On (SSO), SSO

– Dex OIDC, Dex

– direct OIDC, Direct OIDC

– implementing SSO, SSO in action-SSO using the Argo
CD CLI

– Keycloak setup, SSO in action-SSO in action

– SSO using Argo CD CLI, SSO using the Argo CD
CLI-SSO using the Argo CD CLI

– SSO using Dex, SSO using Dex-SSO using Dex

– SSO using direct OIDC, SSO using direct OIDC

Slack for community interactions, Slack
– Argo-specific channels, Slack

– Kubernetes communities, Slack

source code repository for Argo CD, GitHub

.spec.destination, Application Overview
– resource management, Resource Management

– service accounts to impersonate, Define the Service
Account to Use for Impersonation

.spec.source, Application Overview

.spec.strategy for Progressive Sync, Use Case: Using
Progressive Sync

SSH-based authentication, SSH-Based Authentication-SSH-
Based Authentication

– about SSH, SSH-Based Authentication

– keys with passphrases not supported, SSH-Based
Authentication

– private and public key files, SSH-Based Authentication

– SSH hosts, Configuring TLS Repository Certificates

– ssh-keygen command, SSH-Based Authentication

– verification steps, SSH-Based Authentication

SSL certificate via OpenSSL, SSO in action

SSL passthrough support enabled, Securing Argo CD

SSO (see single sign-on (SSO))

starting up, Prerequisites

state of Kubernetes resource stored via Redis, Redis

stateless architecture of Argo CD, Argo CD Key Patterns
– status field for historical context, Argo CD Key Patterns

Swagger OpenAPI specification, Additional Methods for
Managing Argo CD

– Swagger UI for visualizing, Additional Methods for
Managing Argo CD

sync waves, Sync Waves-Sync Waves, Argo CD Application
Drawbacks

– App-of-Apps with sync waves use case, Use Case Setup-
Use Case: App-of-Apps with Sync Waves

– about setup, Use Case Setup

– Argo CD health check setup, Adding Argo CD
Health Checks

– probe setup, Inspecting Probes

– use case, Use Case: App-of-Apps with Sync Waves-
Use Case: App-of-Apps with Sync Waves

synchronization of Applications (Argo CD)
– Application sync impersonation, Application Sync

Impersonation-Deploying an Application with
Impersonation

– about, Application Sync Impersonation

– deploying an Application with impersonation,
Deploying an Application with Impersonation

– enabling, Enable Sync with Impersonation

– service account, Define the Service Account to Use
for Impersonation

– automated synchronization, Managing How
Applications Are Synchronized

– compare-options annotation, Comparing Options

– hooks, Hooks
– deletion policies, Manifest Sync Wave Overview

– idempotent, Manifest Sync Wave Overview

– sync waves within, Sync Waves, Manifest Sync
Wave Overview

– ignoreDifferences annotation, Managing Resource
Differences

– application level, Application-Level Diffing

– system level, System-Level Diffing

– initiating manually, Managing How Applications Are
Synchronized

– managing how Applications synchronized, Managing
How Applications Are Synchronized

– order of synchronization, Sync Order and Hooks
– Progressive Sync, Progressive Sync, Use Case:

Using Progressive Sync

– Progressive Sync as alpha feature, Progressive
Sync

– Progressive Sync use case, Use Case: Using
Progressive Sync-Use Case: Using Progressive Sync

– sync waves, Sync Waves-Sync Waves, Argo CD
Application Drawbacks

– sync waves in database use case, Manifest Sync
Wave Overview-Manifest Sync Wave Overview

– syncOptions, Sync Options
– Application level, Application-Level Options

– first deployed Application, Deploying Your First
Application

– resource level, Resource-Level Options

– syncPolicy
– automated synchronization, Managing How

Applications Are Synchronized

– database schema use case, Argo CD Application
Overview

– first deployed Application, Deploying Your First
Application

– use case of database schema setup, Use Case: Database
Schema Setup-Seeing It in Action

– about, Use Case: Database Schema Setup

– importance of probes, Importance of Probes

– manifest sync wave, Manifest Sync Wave Overview-
Manifest Sync Wave Overview

– repository of artifacts, Argo CD Application
Overview

– seeing it in action, Seeing It in Action-Seeing It in
Action

– viewing manifest, Argo CD Application Overview

system-level diffing, System-Level Diffing

T

Tekton, CI/CD Integration via Tekton-Triggering Tekton
Pipelines

– about, CI/CD Integration via Tekton

– building a Tekton pipeline, Building a Tekton Pipeline-
Building a Tekton Pipeline

– about pipelines, Building a Tekton Pipeline

– actions of pipeline, Building a Tekton Pipeline

– components, Building a Tekton Pipeline
– Custom Resource Definitions, Building a Tekton

Pipeline

– projects, CI/CD Integration via Tekton

– triggering Tekton pipelines, Triggering Tekton
Pipelines-Triggering Tekton Pipelines

– trigger entities, Triggering Tekton Pipelines

– website, CI/CD Integration via Tekton

Telefonistka (Wayfair), GitOps Promotions
– GitHub repository, GitOps Promotions

templating engine for Applications, ApplicationSets
– generators as parameters fed to, ApplicationSets

tenants, Multi-Tenancy

TLS
– Cert Manager, Argo CD Health Checks

– certificate chain, Generating Argo CD TLS Certificates-
Generating Argo CD TLS Certificates

– root certificate, Generating Argo CD TLS
Certificates-Generating Argo CD TLS Certificates

– TLS certificate added for Gitea, Configuring TLS
Repository Certificates

– certificate self-signed by Argo CD, Deploying Argo CD
using YAML manifests, Securing Argo CD

– certificate via ingress controller, The User Interface in
Depth

– certificates and repository access, Repository Access-
Repository Access

– configuring certificates, Configuring TLS Certificates-
Configuring TLS Repository Certificates

– about trusting certificates, Configuring TLS
Certificates

– generating Argo CD TLS certificates, Generating
Argo CD TLS Certificates-Generating Argo CD TLS
Certificates

– enabled in Argo CD server, Securing Argo CD-Securing
Argo CD

– Gitea configuration, Repository Access

– HTTPS credentials for protected repository, HTTPS
Credentials-HTTPS Credentials

– Secret Argo CD server certificates defined in,
Generating Argo CD TLS Certificates

– TLS repository certificates
– configuring, Configuring TLS Repository

Certificates

– configuring declaratively, Configuring TLS
Repository Certificates

– removing, Configuring TLS Repository Certificates

– restoring, Configuring TLS Repository Certificates

Torvalds, Linus, Summary

twelve-factor app, Registering the Plugin

U

UI (Argo CD)
– API server for, API server

– App-of-Apps with sync waves use case, Use Case: App-
of-Apps with Sync Waves-Use Case: App-of-Apps with
Sync Waves

– Application synchronization
– database schema setup use case, Seeing It in

Action-Seeing It in Action

– Enable Auto-Sync button for automated, Managing
How Applications Are Synchronized

– Sync button for manual initiation, Managing How
Applications Are Synchronized

– Argo CD configuration options, API server, The User
Interface in Depth-The User Interface in Depth

– Argo CD key feature, Deploying Argo CD using YAML
manifests

– CLI for other properties, The User Interface in Depth

– credential template setup, Enabling Reuse Through
Credential Templates

– customization, User Interface Customization-UI
Extensions

– ArgoCD Extension Metrics for Prometheus metrics,
UI Extensions

– banner notifications, Banner Notifications

– Cascading Style Sheets, Custom Styles-Custom
Styles

– UI extensions, UI Extensions-UI Extensions

– dashboard, Deploying Argo CD using YAML manifests

– explanation in depth, The User Interface in Depth-The
User Interface in Depth

– NGINX Ingress resources, The User Interface in
Depth-The User Interface in Depth

– Flux versus Argo CD, Comparison of Flux and Argo CD

– local user login access, Local Users

– monitoring Argo CD, Monitoring

– port-forward tunnel to access, Deploying Argo CD using
YAML manifests

– Ingress controller instead, The User Interface in
Depth

– NGINX Ingress resources instead, The User
Interface in Depth-The User Interface in Depth

– self-signed TLS certificate, Deploying Argo CD
using YAML manifests

– repository credentials, HTTPS Credentials, HTTPS
Credentials

– CLI versus UI, HTTPS Credentials

– Settings page, The User Interface in Depth

– TLS certificate added for Gitea, Configuring TLS
Repository Certificates

– User Info page, The User Interface in Depth

use cases
– App-of-Apps with sync waves, Use Case Setup-Use

Case: App-of-Apps with Sync Waves

– about setup, Use Case Setup

– Argo CD health check setup, Adding Argo CD
Health Checks

– probe setup, Inspecting Probes

– dashboard for GitOps, Use Case: GitOps Dashboard-
Test Setup

– about, Use Case: GitOps Dashboard

– configuring Project, Configure Project

– creating Project, Create Project

– deploying Applications, Deploy Applications

– testing setup, Test Setup-Test Setup

– database schema setup, Use Case: Database Schema
Setup-Seeing It in Action

– about, Use Case: Database Schema Setup

– importance of probes, Importance of Probes

– manifest sync wave, Manifest Sync Wave Overview-
Manifest Sync Wave Overview

– repository of artifacts, Argo CD Application
Overview

– seeing it in action, Seeing It in Action-Seeing It in
Action

– viewing manifest, Argo CD Application Overview

– Progressive Synchronization, Use Case: Using
Progressive Sync-Use Case: Using Progressive Sync

User Info page of UI (Argo CD), The User Interface in
Depth

user interface (see CLI via argocd client; UI (Argo CD))

user management
– about, Authentication and Authorization

– admin, The Admin User
– about, Managing Users

– changing default password, The Argo CD
Command-Line Interface (CLI), The Admin User,
Securing Argo CD

– disabling account, Disabling users, Securing Argo
CD

– login and password, Deploying Argo CD using
YAML manifests, The User Interface in Depth

– obtaining admin password, The Admin User

– anonymous access, Anonymous Access

– getting user information, The Admin User, Local Users

– local users, Local Users-Auth tokens
– apiKey for authentication tokens, Local Users, Auth

tokens

– authentication tokens, Auth tokens-Auth tokens

– authentication tokens per user displayed, Auth
tokens

– disabling, Disabling users

– login access to web UI, Local Users

– new local user defined, Local Users

– new local user password reset, Local Users

– password changed via argocd, Local Users

– password defined declaratively, Local Users

– reinstating disabled user, Disabling users

– viewing user information, The Admin User, Local
Users

– role-based access control, Role-Based Access Control-
Anonymous Access

– about RBAC in practice, Role-Based Access Control

– admin and readonly roles, Argo CD RBAC Basics,
Custom Role Creation

– AppProject or not-AppProject definition structures,
Argo CD RBAC Basics

– basics of, Argo CD RBAC Basics-Argo CD RBAC
Basics

– custom role creation, Custom Role Creation

– default policies, RBAC Defaults

– policies, Argo CD RBAC Basics

– policies for developer custom role, Custom Role
Creation

– policies managed via CSV file, Argo CD RBAC
Basics

– policies managed via separate CSV files, Custom
Role Creation

– policy files validated, Custom Role Creation

– User Info page in Argo CD Settings, The User
Interface in Depth

– single sign-on to external tools, SSO-SSO using the
Argo CD CLI

– about, Single Sign On (SSO), SSO

– Dex OIDC, Dex

– direct OIDC, Direct OIDC

– implementing SSO, SSO in action-SSO using the
Argo CD CLI

– Keycloak setup, SSO in action-SSO in action

– SSO using Argo CD CLI, SSO using the Argo CD
CLI-SSO using the Argo CD CLI

– SSO using Dex, SSO using Dex-SSO using Dex

– SSO using direct OIDC, SSO using direct OIDC

W

Wayfair Telefonistka, GitOps Promotions

Weaveworks, Origins of GitOps
– Flux, Comparison of GitOps Tools in the Ecosystem

web app deployment, Seeing It in Action
– probes, Importance of Probes

web UI (Argo CD)
– API server for, API server

– App-of-Apps with sync waves use case, Use Case: App-
of-Apps with Sync Waves-Use Case: App-of-Apps with
Sync Waves

– Application synchronization
– database schema setup use case, Seeing It in

Action-Seeing It in Action

– Enable Auto-Sync button for automated, Managing
How Applications Are Synchronized

– Sync button for manual initiation, Managing How
Applications Are Synchronized

– Argo CD configuration options, API server, The User
Interface in Depth-The User Interface in Depth

– Argo CD key feature, Deploying Argo CD using YAML
manifests

– CLI for other properties, The User Interface in Depth

– credential template setup, Enabling Reuse Through
Credential Templates

– customization, User Interface Customization-UI
Extensions

– ArgoCD Extension Metrics for Prometheus metrics,
UI Extensions

– banner notifications, Banner Notifications

– Cascading Style Sheets, Custom Styles-Custom
Styles

– UI extensions, UI Extensions-UI Extensions

– dashboard, Deploying Argo CD using YAML manifests

– explanation in depth, The User Interface in Depth-The
User Interface in Depth

– NGINX Ingress resources, The User Interface in
Depth-The User Interface in Depth

– Flux versus Argo CD, Comparison of Flux and Argo CD

– local user login access, Local Users

– monitoring Argo CD, Monitoring

– port-forward tunnel to access, Deploying Argo CD using
YAML manifests

– Ingress controller instead, The User Interface in
Depth

– login username and password, Deploying Argo CD
using YAML manifests

– NGINX Ingress resources instead, The User
Interface in Depth-The User Interface in Depth

– self-signed TLS certificate, Deploying Argo CD
using YAML manifests

– repository credentials, HTTPS Credentials, HTTPS
Credentials

– CLI versus UI, HTTPS Credentials

– Settings page, The User Interface in Depth

– TLS certificate added for Gitea, Configuring TLS
Repository Certificates

– User Info page, The User Interface in Depth

webhooks

– importance of in CI/CD workflow, Setting Up Webhooks

– Notifications of Argo CD, Notifications

– reconciliation loop association, Reconciliation Response
Time

– setting up webhooks, Setting Up Webhooks-Setting Up
Webhooks

workflow best practices, GitOps Workflow Best Practices-
Merging strategy

– about Argo Workflows, The Argo Ecosystem

workloads
– registering into Kubernetes via Deployments,

Kubernetes Controller Pattern

Y

YAML
– about jq and yq tools, YAML/JSON Processing

– configuration management avoiding duplication, The
DRY approach

– manifests for deploying Argo CD, Deploying Argo CD
using YAML manifests-Deploying Argo CD using YAML
manifests

– Helm resource dynamic templating versus,
Deploying Argo CD using Helm

yq tool, YAML/JSON Processing
– information online, Inspecting Probes

– inspecting manifests for probes, Inspecting Probes

About the Authors

Andrew Block is a distinguished architect at Red Hat who
works with organizations throughout the world to design
and implement solutions leveraging cloud native and
emerging technologies. He specializes in embracing
security at every phase of the software development
lifecycle and delivering software in a repeatable and
consistent manner. Andrew has authored several
publications related to the cloud native ecosystem
including Managing Kubernetes Resources Using Helm and
Kubernetes Secrets Management in order to share his
knowledge with others. He holds several roles in the open
source community and is a core maintainer of Helm, a
package manager for Kubernetes.
Christian Hernandez is a well-rounded technologist with
experience in infrastructure engineering, systems
administration, enterprise architecture, tech support,
advocacy, and product management. Passionate about open
source and containerizing the world one application at a
time, he is currently a maintainer of the OpenGitOps
project, a member of the Argo Project, and the head of
community at Akuity. He focuses on GitOps practices,
DevOps, Kubernetes, and Containers.

Colophon

The animal on the cover of Argo CD: Up and Running is a
starry night octopus (Callistoctopus luteus). This animal’s
skin is reddish-brown and adorned with small white
iridescent spots that give the species its evocative common
name. It is found in warm tropical and subtropical oceans
in the Indo-Pacific region, including near the countries of
Indonesia, Australia, and the Philippines.
The starry night octopus has long, slender arms that are
often up to three times the length of its body. It is nocturnal
and lives near coral reefs or rubble-strewn areas, which
provide plenty of crevices in which to hide as well as ample
prey. This octopus primarily eats small crustaceans,
mollusks, and fish—it is an exceptional hunter with high
intelligence, problem-solving skills, and the ability to
camouflage itself.
This octopus species is still relatively understudied by
scientists, though it is believed to be mostly solitary and
have a lifespan of only a few years (which is common for
octopi). Despite its striking “star-studded” appearance, it is
not often seen by divers or marine biologists due to its
nocturnal lifestyle and highly effective camouflage.
Many of the animals on O’Reilly covers are endangered; all
of them are important to the world.
The cover illustration is by Karen Montgomery, based on an
antique engraving from Oceanworld. The cover fonts are
Gilroy Semibold and Guardian Sans. The text font is Adobe
Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Preface
	Who Should Read This Book
	Why We Wrote This Book
	Navigating This Book
	What This Book Will Not Cover
	Prerequisites
	kind
	Helm
	Kubernetes Client
	Argo CD CLI Client
	YAML/JSON Processing
	Companion Git Repository

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Introduction to Argo CD
	What Is Argo CD?
	Why Argo CD?
	Unifying Application Definitions
	Configuration Drift
	Rollback and Disaster Recovery

	The GitOps Movement
	Origins of GitOps
	OpenGitOps Principles

	Comparison of GitOps Tools in the Ecosystem
	Flux
	Argo CD
	Comparison of Flux and Argo CD

	The Argo Ecosystem
	Summary

	2. Installing Argo CD
	Argo CD Architecture
	Kubernetes Controller Pattern
	Argo CD Architecture Overview
	Argo CD Key Patterns

	Installing Argo CD
	Installation Types
	Deploying Argo CD

	Summary

	3. Interacting with Argo CD
	The User Interface in Depth
	The Argo CD Command-Line Interface (CLI)
	Additional Methods for Managing Argo CD
	Summary

	4. Managing Applications
	Application Overview
	Application Sources
	Git
	Helm

	Destinations
	Tools
	Helm
	Kustomize
	Beyond Helm and Kustomize

	Deploying Your First Application
	Deleting Applications
	Finalizers

	Summary

	5. Synchronizing Applications
	Managing How Applications Are Synchronized
	Sync Options
	Application-Level Options
	Resource-Level Options

	Sync Order and Hooks
	Hooks
	Sync Waves

	Comparing Options
	Managing Resource Differences
	Application-Level Diffing
	System-Level Diffing

	Use Case: Database Schema Setup
	Argo CD Application Overview
	Manifest Sync Wave Overview
	Importance of Probes
	Seeing It in Action

	Summary

	6. Authentication and Authorization
	Managing Users
	The Admin User
	Local Users
	SSO

	Role-Based Access Control
	Argo CD RBAC Basics
	Custom Role Creation
	RBAC Defaults
	Anonymous Access

	Summary

	7. Cluster Management
	Cluster Architecture
	Local Versus Remote Clusters
	Hub-and-Spoke Design
	How Clusters Are Defined

	Adding Remote Clusters
	Creating a Cluster
	Adding a Cluster with the CLI
	Adding a Cluster Declaratively

	Deploying Applications to Multiple Clusters
	App-of-Apps Pattern
	Using Helm
	ApplicationSets

	Summary

	8. Multi-Tenancy
	Argo CD Installation Modes
	Cluster Scoped
	Namespace Scoped

	Projects
	Resource Management
	Use Case: GitOps Dashboard
	Create Project
	Deploy Applications
	Configure Project
	Test Setup

	Summary

	9. Security
	Securing Argo CD
	Configuring TLS Certificates
	Generating Argo CD TLS Certificates
	Repository Access
	Configuring TLS Repository Certificates

	Protected Repositories
	HTTPS Credentials
	SSH-Based Authentication
	Enabling Reuse Through Credential Templates

	Enforcing Signature Verification
	Enable Signature Verification
	Signature Verification in Action

	Application Sync Impersonation
	Enable Sync with Impersonation
	Define the Service Account to Use for Impersonation
	Deploying an Application with Impersonation

	Summary

	10. Applications at Scale
	Argo CD Application Drawbacks
	Consideration and Best Practices
	Set Up Probes
	Argo CD Health Checks
	Application Health

	Eventual Consistency
	Use Case Setup
	Inspecting Probes
	Adding Argo CD Health Checks

	Use Case: App-of-Apps with Sync Waves
	ApplicationSets
	Progressive Sync

	Use Case: Using Progressive Sync
	Summary

	11. Extending Argo CD
	Config Management Plugins
	The ConfigManagementPlugin Manifest
	Registering the Plugin
	Customizing Plugin Execution
	Environment Variables
	Parameters

	User Interface Customization
	Banner Notifications
	Custom Styles
	UI Extensions

	Summary

	12. Integrating CI with Argo CD
	Reconciliation Response Time
	Modifying Reconciliation
	Setting Up Webhooks

	CI/CD Integration via Tekton
	Building a Tekton Pipeline
	Triggering Tekton Pipelines

	Summary

	13. Operationalizing Argo CD
	Monitoring
	Installing Prometheus Stack
	Configuring Argo CD for Prometheus
	Accessing Grafana

	Notifications
	Installing Mattermost
	Configuring Mattermost
	Setting Up Argo CD Notifications

	High Availability
	Scalability
	Scaling Up
	Sharding

	Summary

	14. Future Considerations
	GitOps Is Still Evolving
	GitOps Directory Structure Considerations
	Rendered Manifests Pattern
	GitOps Workflow Best Practices

	Interacting with the Community
	Slack
	GitHub

	Next Steps
	Progressive Delivery
	GitOps Promotions

	Summary

	Index
	About the Authors

